Information Systems Frontiers

, Volume 20, Issue 6, pp 1319–1344 | Cite as

A structural-semantic web service selection approach to improve retrievability of web services

  • Martin GarrigaEmail author
  • Alan De Renzis
  • Ignacio Lizarralde
  • Andres Flores
  • Cristian Mateos
  • Alejandra Cechich
  • Alejandro Zunino


Service-Oriented Computing promotes building applications by consuming and reusing Web Services. However, the selection of adequate Web Services given a client application is still a major challenge. The effort of assessing and adapting candidate services could be overwhelming due to the “impedance” of Web Service interfaces expected by clients versus the actual interfaces of retrieved Web Services. In this work, we present a novel structural-semantic approach to help developers in the retrieval and selection of services from a service registry. The approach is based on a comprehensive structural scheme for service Interface Compatibility analysis, and WordNet as the semantic support to assess identifiers of operations and parameters. We also empirically analyze, compare and contrast the performance of three service selection methods: a pure structural approach, a pure semantic approach, and the structural-semantic (hybrid) approach proposed in this work. The experimental analysis was performed with two data-sets of real-world Web Services and a service discovery support already published in the literature. Results show that our hybrid service selection approach improved effectiveness in terms of retrievability of Web Services compared to the other approaches.


Web services Web service discovery Service interface Service selection Structural service selection Semantic service selection 



This work is supported by grants ANPCyT PICT 2012-0045 and UNCo–Reuse (04-F001). We would like to thank to the anonymous reviewers that contributed to improve the quality of this work with their helpful comments. Also, to Ph.D. Giuseppe Pirró who gently provided the articles and the JWSL library that depict and implement the semantic similarity metric, respectively. Finally, we thank to student Marcos Trotti for the implementation of the query mutator.


  1. Agichtein, E., Brill, E., Dumais, S., & Ragno, R (2006). Learning user interaction models for predicting web search result preferences. In 29th Annual ACM SIGIR International Conference on Research and Development in Information Retrieval (pp. 3–10): ACM Press.Google Scholar
  2. Al-Masri, E., & Mahmoud, Q. H (2007). Qos-based discovery and ranking of web services. In 16th International Conference on Computer Communications and Networks, ICCCN’07 (pp. 529–534): IEEE Computer Society Press.Google Scholar
  3. Al-Sharawneh, J., Williams, M., Wang, X., & Goldbaum, D (2011). Mitigating risk in web-based social network service selection: follow the leader. In International Conference on Internet and Web Applications and Services. The International Academy: Research and Industry Association (IARIA).Google Scholar
  4. Anabalon, D., Garriga, M., Flores, A., Cechich, A., & Zunino, A (2015). Test reduction for easing web service integration. In Proceedings of the Argentinean Symposium on Software Engineering (pp. 115–129): SADIO.Google Scholar
  5. Benslimane, D., Dudstar, S., & Sheth, A (2008). Service mashups: The new generation of web applications. IEEE Internet Computing, 12(5), 13–15.CrossRefGoogle Scholar
  6. Bouchiha, D., Malki, M., Alghamdi, A., & Alnafjan, K (2012). Semantic web service engineering: Annotation based approach. Computing and Informatics, 31(6), 1575–1595.Google Scholar
  7. Butler, S., Wermelinger, M., Yu, Y., & Sharp, H (2011). Mining java class naming conventions. In IEEE International Conference on Software Maintenance (ICSM) (pp. 93–102): IEEE.Google Scholar
  8. Cabral, L., Domingue, J., Motta, E., Payne, T., & Hakimpour, F (2004). Approaches to semantic web services: an overview and comparisons. In Bussler, C, Davies, J, Fensel, D., Fensel, D., & Studer, R. (Eds.) The Semantic Web: Research and Applications, volume 3053 of Lecture Notes in Computer Science (pp. 225–239). Berlin: Springer.Google Scholar
  9. Cao, B., Liu, J., Tang, M., Zheng, Z., & Wang, G (2013). Mashup service recommendation based on user interest and social network. In IEEE 20th International Conference on Web Services (ICWS) (pp. 99–106): IEEE.Google Scholar
  10. Chen, W., & Paik, I. (2013). Improving efficiency of service discovery using linked data-based service publication. Information Systems Frontiers, 15(4), 613–625.CrossRefGoogle Scholar
  11. Choi, C. R., & Jeong, H. Y. (2014). A broker-based quality evaluation system for service selection according to the qos preferences of users. Information Sciences, 277, 553–566.CrossRefGoogle Scholar
  12. Cong, Z., Fernandez, A., Billhardt, H., & Lujak, M. (2015). Service discovery acceleration with hierarchical clustering. Information Systems Frontiers, 17(4), 799–808.CrossRefGoogle Scholar
  13. Crasso, M., Mateos, C., Zunino, A., & Campo, M (2014). EasySOC: Making web service outsourcing easier. Information Sciences, 259, 452–473.CrossRefGoogle Scholar
  14. Crasso, M., Zunino, A., & Campo, M. (2008). Easy web service discovery: A query-by-example approach. Science of Computer Programming, 71(2), 144–164.CrossRefGoogle Scholar
  15. Crasso, M., Zunino, A., & Campo, M. (2011a). Combining query-by-example and query expansion for simplifying web service discovery. Information Systems Frontiers, 13(3), 407–428.CrossRefGoogle Scholar
  16. Crasso, M., Zunino, A., & Campo, M. (2011b). A survey of approaches to web service discovery in service-oriented architectures. Journal of Database Management (JDM), 22(1), 102–132.CrossRefGoogle Scholar
  17. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002). Unraveling the web services web: an introduction to soap, wsdl, and uddi. IEEE Internet computing, 6(2), 86–93.CrossRefGoogle Scholar
  18. De Renzis, A., Garriga, M., Flores, A., Zunino, A., & Cechich, A (2014). Semantic-structural assessment scheme for integrability in service-oriented applications. In Latin-american Symposium of Enterprise Computing, held during CLEI’2014.Google Scholar
  19. Delamaro, M., Maidonado, J., & Mathur, A. (2001). Interface mutation: an approach for integration testing. IEEE Transactions on Software Engineering, 27(3), 228–247.CrossRefGoogle Scholar
  20. Dong, X., Halevy, A., Madhavan, J., Nemes, E., & Zhang, J (2004). Similarity search for web services. In Proceedings of the International Conference on Very Large Data Bases VLDB (pp. 372–383): VLDB Endowment.Google Scholar
  21. Elish, M. O., & Offutt, J (2002). The adherence of open source java programmers to standard coding practices. In 6th International Conference on Software Engineering and Applications IASTED (pp. 374.200–374.207).Google Scholar
  22. Erl, T., Kamarkar, A., Walmsley, P., Haas, H., Yalcinalp, U., Liu, C., Orchard, D., Tost, A., & Pasley, J. (2008). Web service contract design & versioning for SOA, 1st edn Vol. 1: Prentice Hall.Google Scholar
  23. Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C., Prince, V., & Dao, M (2010). Automatic extraction of a wordnet-like identifier network from software. In International Conference on Program Comprehension (ICPC) (pp. 4–13): IEEE.Google Scholar
  24. Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures. USA: PhD thesis, University of California.Google Scholar
  25. Flores, A., Cechich, A., Zunino, A., & Polo, M (2010). Testing-based selection method for integrability on service-oriented applications. In 5th International Conference on Software Engineering Advances ICSEA’10 (pp. 373–379). Nice: IEEE Computer Society Press.Google Scholar
  26. Flores, A., & Polo, M (2012). Testing-based process for component substitutability. Software Testing, Verification and Reliability, 22(8), 529–561.Google Scholar
  27. Fowler, M (1999). Refactoring: improving the design of existing code. Pearson Education India.Google Scholar
  28. Fragoso, O., Santaolaya, R., & Solis, I. (2006). Using case-based reasoning for improving precision and recall in web services selection. International Journal of Web and Grid Services, 2(3), 306–330.CrossRefGoogle Scholar
  29. Funika, W., Godowski, P., Pęgiel, P., & Król, D. (2012). Semantic-oriented performance monitoring of distributed applications. Computing and Informatics, 31(2), 427–446.Google Scholar
  30. Garriga, M., Flores, A., Cechich, A., & Zunino, A. (2011). Testing-based process for service-oriented applications. In 30th IEEE International Conference of the Chilean Computer Science Society (SCCC) (pp. 64–73).Google Scholar
  31. Garriga, M., Flores, A., Cechich, A., & Zunino, A. (2015). Web services composition mechanisms: a review. IETE Technical Review, 32(5), 376–383.CrossRefGoogle Scholar
  32. Garriga, M., Flores, A., Mateos, C., Zunino, A., & Cechich, A. (2013). Service selection based on a practical interface assessment scheme. International Journal of Web and Grid Services, 9(4), 369–393.CrossRefGoogle Scholar
  33. Garriga, M., Mateos, C., Flores, A., Cechich, A., & Zunino, A (2016). {RESTFul} service composition at a glance: a survey. Journal of Network and Computer Applications, 60, 32–53.CrossRefGoogle Scholar
  34. George, B., Fleurquin, R., & Sadou, S (2008). A component selection framework for COTS libraries. Lecture Notes In Computer Sciences, 5282, 286–301.CrossRefGoogle Scholar
  35. Guizzardi, G. (2005). Ontological foundations for structural conceptual models, 1st Ed. The Netherlands: Universal Press. ISBN 90-75176-81-3.Google Scholar
  36. Gupta, S., Malik, S., Pollock, L., & Vijay-Shanker, K (2013). Part-of-speech tagging of program identifiers for improved text-based software engineering tools. In International Conference on Program Comprehension (ICPC) (pp. 3–12): IEEE.Google Scholar
  37. Heß, A., Johnston, E., & Kushmerick, N. (2004). Assam: A tool for semi-automatically annotating semantic web services. In The Semantic Web–ISWC 2004 (pp. 320–334): Springer.Google Scholar
  38. Hummel, O., Janjic, W., & Atkinson, C (2008). Code conjurer: Pulling reusable software out of thin air. IEEE Software, 45–52.CrossRefGoogle Scholar
  39. Jiang, L., Liu, T., & Liu, D (2015). Objective and subjective qos factors supported web service search method based on extended wsdl. In International Conference on Geoinformatics (pp. 1–4): IEEE.Google Scholar
  40. Kessel, M., & Atkinson, C. (2016). Ranking software components for reuse based on non-functional properties. Information Systems Frontiers, 18(5), 825–853.CrossRefGoogle Scholar
  41. Kil, H., Oh, S. -C., & Lee, D. (2006). On the topological landscape of web services matchmaking. VLDB Workshop on Semantic Matchmaking and Resource Retrieval (CEUR), 178, 19–34.Google Scholar
  42. Kirk, RE. (1982). Experimental design: Wiley Online Library.Google Scholar
  43. Kokash, N (2006). A comparison of web service interface similarity measures. Amsterdam: IOS Press.Google Scholar
  44. Kolb, P (2009). Experiments on the difference between semantic similarity and relatedness. In Proceedings of the 17th Nordic Conference on Computational Linguistics - NODALIDA’09.Google Scholar
  45. Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research Logistic Quarterly, 2, 83–97.CrossRefGoogle Scholar
  46. Kung-Kiu, L., & Zheng, W (2007). Software component models. IEEE Transactions on Software Engineering, 10, 709–724.Google Scholar
  47. Lacheheub, MN, & Maamri, R (2016). Towards a construction of an intelligent business process based on cloud services and driven by degree of similarity and qos. Information Systems Frontiers, 18(6), 1085–1102.CrossRefGoogle Scholar
  48. Lalanne, F., Cavalli, A., & Maag, S (2012). Quality of experience as a selection criterion for web services (pp. 519–526): IEEE.Google Scholar
  49. Lanthaler, M., & Gutl, C (2011). A semantic description language for RESTful data services to combat semaphobia. In Proceedings of the 5th International Conference on Digital Ecosystems and Technologies Conference (DEST) (pp. 47–53): IEEE.Google Scholar
  50. Li, K., Verma, K., Mulye, R., Rabbani, R., Miller, J. A., & Sheth, A (2006). Designing semantic web processes: The wsdl-s approach. In Semantic Web Services, Processes and Applications (pp. 161–193): Springer.Google Scholar
  51. Malik, Z., & Bouguettaya, A. (2009). Rateweb: Reputation assessment for trust establishment among web services. The VLDB Journal – The International Journal on Very Large Data Bases, 18(4), 885–911.CrossRefGoogle Scholar
  52. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K., McGuiness, D., Sirin, E., & Srinivasan, N. (2007). Bringing semantics to web services with owl-s. World Wide Web, 10, 243–277.CrossRefGoogle Scholar
  53. Mateos, C., Crasso, M., Zunino, A., & Coscia, J. (2013). Revising wsdl documents: Why and how, part 2. IEEE Internet Computing, 17(5), 46–53.CrossRefGoogle Scholar
  54. Mateos, C., Crasso, M., Zunino, A., & Ordiales, J. L (2011). Detecting WSDL bad practices in code–first web services. International Journal of Web and Grid Services, 7(4), 357–387.CrossRefGoogle Scholar
  55. Mateos, C., Crasso, M., Zunino, A., & Ordiales Coscia, J. L. (2015a). A stitch in time saves nine: Early improving code-first web services discoverability. International Journal of Cooperative Information Systems, 24(02).CrossRefGoogle Scholar
  56. Mateos, C., Rodriguez, J. M., & Zunino, A. (2015b). A tool to improve code-first web services discoverability through text mining techniques. Software: Practice and Experience, 45(7), 925–948.Google Scholar
  57. McCool, R (2005). Rethinking the semantic web. IEEE Internet Computing, 9(6), 86–87.CrossRefGoogle Scholar
  58. Michel, J., Shen, Y., Aiden, A., Veres, A., Gray, M., Pickett, J., Hoiberg, D., Clancy, D., Norvig, P., & Orwant, J. (2011). Quantitative analysis of culture using millions of digitized books. Science, 331 (6014), 176–182.CrossRefGoogle Scholar
  59. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K (1990). Introduction to wordnet: an on-line lexical database. International Journal of Lexicography, 3(4), 235–244.CrossRefGoogle Scholar
  60. Noy, N. F. (2004). Semantic integration: a survey of ontology-based approaches. SIGMOD Rec., 33(4), 65–70.CrossRefGoogle Scholar
  61. Orne, MT. (2009). Artifacts in Behavioral Research, chapter Demand characteristics and the concept of quasi-controls: Oxford University Press.Google Scholar
  62. Oskooei, M. A., & Daud, S. M (2014). Quality of service (qos) model for web service selection. In International Conference on Computer, Communications, and Control Technology (I4CT) (pp. 266–270): IEEE.Google Scholar
  63. Own, H., & Yahyaoui, H. (2015). Rough set based classification of real world web services. Information Systems Frontiers, 17(6), 1301–1311.CrossRefGoogle Scholar
  64. Papazoglou, M., Traverso, P., Dustdar, S., & Leymann, F (2007). Service-oriented computing: State of the art and research challenges. IEEE Computer, 40(11), 38–45.CrossRefGoogle Scholar
  65. Pasley, J (2006). Avoid XML schema wildcards for web service interfaces. IEEE Internet Computing, 10(3), 72–79.CrossRefGoogle Scholar
  66. Pelleg, D., Rokhlenko, O., Szpektor, I., Agichtein, E., & Guy, I. (2016). When the crowd is not enough: Improving user experience with social media through automatic quality analysis. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, CSCW ’16 (pp. 1080–1090). New York: ACM.Google Scholar
  67. Peltz, C (2003). Web services orchestration and choreography. IEEE Computer, 36(10), 46–52.CrossRefGoogle Scholar
  68. Pirró, G. (2009). A semantic similarity metric combining features and intrinsic information content. Data & Knowledge Engineering, 68(11), 1289–1308.CrossRefGoogle Scholar
  69. Plebani, P., & Pernici, B. (2009). Urbe: Web service retrieval based on similarity evaluation. IEEE Transactions on Knowledge and Data Engineering, 21(11), 1629–1642.CrossRefGoogle Scholar
  70. Rajaraman, A., & Ullman, J. (2011). Mining of massive datasets, chapter data mining: Cambridge University Press.Google Scholar
  71. Rambold, M., Kasinger, H., Lautenbacher, F., & Bauer, B (2009). Towards autonomic service discovery a survey and comparison. In IEEE International Conference on Services Computing, SCC (pp. 192–201): IEEE.Google Scholar
  72. Rodriguez, J. M., Crasso, M., Mateos, C., & Zunino, A. (2013). Best practices for describing, consuming, and discovering web services: A comprehensive toolset. Software: Practice and Experience, 43(6), 613–639.Google Scholar
  73. Rodriguez, J. M., Crasso, M., Zunino, A., & Campo, M. (2010). Improving web service descriptions for effective service discovery. Science of Computer Programming, 75(11), 1001– 1021.CrossRefGoogle Scholar
  74. Roman, D., Keller, U., Lausen, H., De Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C., Bussler, C., & Fensel, D. (2005). Web service modeling ontology. Applied ontology, 1(1), 77– 106.Google Scholar
  75. Salton, G., Wong, A., & Yang, C.-S (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620.CrossRefGoogle Scholar
  76. Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S., & Xu, X (2014). Web services composition: A decade’s overview. Information Sciences, 280, 218–238.CrossRefGoogle Scholar
  77. Shvaiko, P., & Euzenat, J. (2013). Ontology matching: State of the art and future challenges. IEEE Transactions on Knowledge and Data Engineering, 25(1), 158–176.CrossRefGoogle Scholar
  78. Sivashanmugam, K., Verma, K., Sheth, A. P., & Miller, J. A. (2003). Adding semantics to web services standards.Google Scholar
  79. Stroulia, E., & Wang, Y (2005). Structural and semantic matching for assessing web-services similarity. International Journal of Cooperative Information Systems, 14, 407–437.CrossRefGoogle Scholar
  80. Tibermacine, O., Tibermacine, C., & Cherif, F. (2013). Wssim: A tool for the measurement of web service interface similarity. In Proceedings of the french-speaking Conference on Software Architectures (CAL’13). Toulouse.Google Scholar
  81. Tversky, A. (1977). Features of similarity. Psychological review, 84(4), 327.CrossRefGoogle Scholar
  82. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., & Ferguson, D. (2005). Web Services Platform Architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL, WS-Reliable Messaging, and More: Prentice Hall PTR.Google Scholar
  83. Willett, P. (2006). The porter stemming algorithm: then and now. Program: electronic library and information systems, 40(3), 219–223.CrossRefGoogle Scholar
  84. Wu, J., & Wu, Z (2005). Similarity-based web service matchmaking. In IEEE International Conference on Services Computing, (Vol. 1 pp. 287–294): IEEE Computer Society Press.Google Scholar
  85. Zimmerman, O., Tomlinson, M., & Peuser, S. (2005). Perspectives on web services – applying SOAP, WSDL and UDDI to real-world projects: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Martin Garriga
    • 1
    • 3
    Email author
  • Alan De Renzis
    • 1
    • 3
  • Ignacio Lizarralde
    • 2
    • 3
  • Andres Flores
    • 1
    • 3
  • Cristian Mateos
    • 2
    • 3
  • Alejandra Cechich
    • 1
  • Alejandro Zunino
    • 2
    • 3
  1. 1.GiiSCo Research Group, Faculty of InformaticsUniversidad Nacional del Comahue (UNComa)Buenos AiresArgentina
  2. 2.ISISTAN Research InstituteUniversidad Nacional del Centro de la Provincia de Buenos Aires (UNPCBA)TandilArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)Buenos AiresArgentina

Personalised recommendations