Advertisement

Information Systems Frontiers

, Volume 21, Issue 1, pp 191–212 | Cite as

An information integration and transmission model of multi-source data for product quality and safety

  • Yingcheng Xu
  • Li WangEmail author
  • Bo Xu
  • Wei Jiang
  • Chaoqun Deng
  • Fang Ji
  • Xiaobo Xu
Article
  • 175 Downloads

Abstract

The product quality and safety information have drawn extensive attention due to social impacts. Based on the transmission characteristics of the Web information, we constructed the information transmission models with government intervention and without government intervention based on complex network. Meanwhile, we analyzed the influence of government intervention on information transmission. Based on the BA network, we adopted the MATLAB tool to simulate the human relation model and utilized event information level, government information level, and possible panic population proportion as index to evaluate the government intervention effect. Our experimental results indicated that the intervention time, the government information platform, network connection characteristics, public inform will, and transmission will do have an intervention effect.

Keywords

Web information Product quality and safety Information transmission model Industrial information integration Government intervention 

Notes

Acknowledgements

We would like to acknowledge that this research is supported and funded by the National Science Foundation of China under Grant No.71301152, No.71271013 and No. 71132008, the National Science Foundation of Beijing under Grant No. 9142012, quality inspection project 552015G-4013, and the basic scientific research funding 552016Y-4700.

References

  1. Becker, H., Naaman, M., & Gravano, L. (2010). Learning similarity metrics for event identification in social media (pp. 291–300). New York, USA: In Proceedings of the Third ACM International Conference on Web Search and Data Mining.Google Scholar
  2. Brooks, H., Montanez, N. (2006). Improved annotation of the Blogosphere via auto-tagging and hierarchical clustering. Proceedings of the 15th international conference on World Wide Web (WWW2006). Edinburgh, Scotland, pp. 624–632.Google Scholar
  3. Cai, H., Xu, L., Xu, B., Xie, C., Qin, S., & Jiang, L. (2014). IoT-based configurable information service platform for product lifecycle management. IEEE Transactions on Industrial Informatics, 10(2), 1558–1567.CrossRefGoogle Scholar
  4. Camelia, M. K., & Alexandra, N. (2012). Public opinion and executive compensation. Management Science, 58(7), 1249–1272.CrossRefGoogle Scholar
  5. Chen, Y. (2016). Industrial information integration-a literature review 2006-2015. Journal of Industrial Information Integration, 1(2), 30–64. doi: 10.1016/j.jii.2016.04.004.CrossRefGoogle Scholar
  6. Chen, Y., Tsai, F. S., & Chan, K. L. (2008). Machine learning techniques for business blog search and mining. Expert Systems with Applications, 35(3), 581–590.CrossRefGoogle Scholar
  7. Fan, Y., Yin, Y., Xu, L., Zeng, Y., & Wu, F. (2014). IoT based smart rehabilitation system. IEEE Transactions on Industrial Informatics, 10(2), 1568–1577.CrossRefGoogle Scholar
  8. Glik, D. C. (2007). Risk communication for public health emergencies. Annual Review of Public Health, 28, 33–54.CrossRefGoogle Scholar
  9. He, W., Xu, L., Means, T., & Wang, P. (2009). Integrating web 2.0 with the case-based reasoning cycle: a systems approach. Systems Research and Behavioral Science, 26(6), 717–728.CrossRefGoogle Scholar
  10. He, W., Yan, G., & Xu, L. (2014). Developing vehicular data cloud services in the IoT environment. IEEE Transactions on Industrial Informatics, 10(2), 1587–1595.CrossRefGoogle Scholar
  11. Hui, C., Magdon-Ismail M., Wallace, W., et al. (2008). Micro-simulation of diffusion of warnings. Proceedings of the 5th International Conference on Information Systems for Crisis Response and Management ISCRAM.Google Scholar
  12. Hui, C., Magdon-Ismail, M., Goldberg, M., et al. (2009). The impact of changes in network structure on diffusion of warnings. Proc. of Workshop on Analysis of Dynamic Networks (SIAM International Conference on Data Mining).Google Scholar
  13. Ivanov, L., & Muminova, S. (2016). Patents for inventions. Nanotechnologies in Construction: A Scientific Internet-Journal, 8(2), 52–70. doi: 10.15828/2075-8545-2016-8-2-52-70.CrossRefGoogle Scholar
  14. Jalili, M. (2013). Social power and opinion formation in complex networks. Physica A: Statistical Mechanics and its Applications, 392(4), 959–966.CrossRefGoogle Scholar
  15. Java, A. Song, X. Finin, T., Tseng, B. (2007). Why we twitter: understanding microblog usage and communities. In Proceedings of the 9th Web KDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, New York, NY, USA, p. 56–65.Google Scholar
  16. Kwak, H., Lee, C., Park, H., et al. (2010). What is twitter, a social network or a news media? Proceedings of the 19th international conference on world wide web (pp. 591–600). North Carolina, USA: Raleigh.Google Scholar
  17. Leskovec, J., & Horvitz, E. (2007). Worldwide buzz: Planetary-scale views on an instant-messaging network. Microsoft Research, June: Technical Report.Google Scholar
  18. Liu, J., Sun, C., & Wu, H. (2012). Animal products quality safety risk analysis and countermeasures. China Poultry, 23(11), 23–27.Google Scholar
  19. Liu, F., Tan, C.-W., Lim, E.T.K. & Choi, B. (2016): Traversing knowledge networks: an algorithmic historiography of extant literature on the internet of things (IoT). Journal of Management Analytics. doi:  10.1080/23270012.2016.1214540
  20. Lu, Y. (2016). Industrial integration: a literature review. Journal of Industrial Integration and Management, 1(2). doi: 10.1142/S242486221650007X.
  21. Luo, Z., Yang, G., & Di, Z. (2012). Opinion formation on the social networks with geographic structure. Acta Physica Sinica, 61(19), 190509.Google Scholar
  22. Mnatsakanyan, Z., Burkom, H., Hashemian, R., & Coletta, M. (2012). Distributed information fusion models for regional public health surveillance. Information Fusion, 13(2), 129–136.CrossRefGoogle Scholar
  23. Nardi, B. A. (2004). Why we blog. Communications of the ACM, 47(12), 41–46.CrossRefGoogle Scholar
  24. Rodriguez, M., J. Leskovec, and A. Krause. (2010). Inferring networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, 1019–1028.Google Scholar
  25. Sarafidis, Y. (2007). What have you done for me lately-release of information and strategic manipulation of memories. The Economic Journal, 117(3), 307–326.CrossRefGoogle Scholar
  26. Smith, R. D. (2002). Instant messaging as a scale-free network. ArXiv: cond-mat/0206378.Google Scholar
  27. Tsai, F. S., & Chan, K. L. (2010). Redundancy and novelty mining in the business blogosphere. The Learning Organization, 17(6), 490–499.CrossRefGoogle Scholar
  28. Wang, R., Jin, Y. S., Li, F. (2012). A review of microblogging evolution based on the complex network theory. 2011 International Conference in Electrics, Communication and Automatic Control Proceedings, 1053–1060.Google Scholar
  29. Wang, C., Bi, Z., & Xu, L. (2014). IoT and cloud computing in automation of assembly modeling systems. IEEE Transactions on Industrial Informatics, 10(2), 1426–1434.CrossRefGoogle Scholar
  30. Wang, P., Chaudhry, S., & Xu, L. (2016). Introduction: advances in e-business engineering and management. Information Technology and Management, 17(3), 199–201. doi: 10.1007/s10799-016-0260-x.CrossRefGoogle Scholar
  31. Weng, J., Lim, E., Jiang, J., et al. (2010). Twitterrank: finding topic-sensitive influential twitterers. In Proc. of the third ACM international conference on Web search and data mining, New York, USA, 261–270.Google Scholar
  32. Xiao, G., Guo, J., Xu, L., & Gong, Z. (2014). User interoperability with heterogeneous IoT devices through transformation. IEEE Transactions on Industrial Informatics, 10(2), 1486–1496.CrossRefGoogle Scholar
  33. Xie, M. S., & Jia, Z. (2012). Simulating the spreading of two competing public opinion information on complex network. Applied Mathematics, 3, 1074–1078.CrossRefGoogle Scholar
  34. Xu, L. (2016). Editorial inaugural issue. Journal of Industrial Information Integration, 1(1), 1–2. doi: 10.1016/j.jii.2016.04.001.Google Scholar
  35. Xu, X., Ji, Y. (2011). Information fusion fault diagnosis method based on incompletely fuzzy rules. 7th National security troubleshooting and technical processes of academic conference proceedings, 55–59.Google Scholar
  36. Xu, L., He, W., Li, S. Internet of things in industries: a survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2248, 2014a.Google Scholar
  37. Xu, B., Xu, L., Cai, H., Xie, C., Hu, J., & Bu, F. (2014b). Ubiquitous data accessing method in IoT-based information system for emergency medical services. IEEE Transactions on Industrial Informatics, 10(2), 1578–1586.CrossRefGoogle Scholar
  38. Yan, H., Xu, L. D., Bi, Z., Pang, Z., Zhang, J., & Chen, Y. (2015). An emerging technology – wearable wireless sensor networks with applications in human health condition monitoring. Journal of Management Analytics, 2(2), 121–137. doi: 10.1080/23270012.2015.1029550.CrossRefGoogle Scholar
  39. Yang, P., et al. (2016). Lifelogging data validation model for internet of things enabled healthcare system. IEEE transactions on systems, man, and cybernetics: systems. Online published, Digital Object Identifier . doi: 10.1109/TSMC.2016.2586075
  40. Yao, Y. (2006). Internet topology study and its application in IM network modeling. Dissertation: China, Zhengzhou University.Google Scholar
  41. Ye, S., Wu, F., (2010) Measuring message propagation and social influence on Twitter.com. Proceedings of the Second international conference on Social informatics. Laxenburg, Austria, 216–231.
  42. Yin, Y., Zeng, Y., Chen, X., & Fan, Y. (2016). The internet of things in healthcare: an overview. Journal of Industrial Information Integration., 1(1), 3–13. doi: 10.1016/j.jii.2016.03.004.CrossRefGoogle Scholar
  43. Zhang, Y., Liu, Y., Zhang, H., Cheng, H., & Xiong, F. (2011). The research of information dissemination model on online social network. Acta Physica Sinica, 60(5), 60–66.Google Scholar
  44. Zheng, L., & Terpenny, J. (2013). A hybrid ontology approach for integration of obsolescence information. Computers & Industrial Engineering, 65, 485–499.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yingcheng Xu
    • 1
  • Li Wang
    • 2
    • 3
    Email author
  • Bo Xu
    • 2
  • Wei Jiang
    • 4
  • Chaoqun Deng
    • 5
  • Fang Ji
    • 6
  • Xiaobo Xu
    • 7
  1. 1.China National Institute of StandardizationBeijingChina
  2. 2.School of Economics and ManagementBeihang UniversityBeijingChina
  3. 3.Beijing Key Laboratory of Emergency Support Simulation Technologies for City OperationsBeijingChina
  4. 4.School of Computer and InformationAnqing Normal UniversityAnqingChina
  5. 5.Lally School of ManagementRensselaer Polytechnic InstituteTroyUSA
  6. 6.Jiangmen Entry-Exit Inspection and Quarantine BureauJiangmenChina
  7. 7.School of Business AdministrationAmerican University of SharjahSharjahUnited Arab Emirates

Personalised recommendations