Information Systems Frontiers

, Volume 19, Issue 5, pp 1067–1084 | Cite as

A model of biomimetic process assets to simulate their impact on strategic goals

  • Maria-Isabel Sanchez-SeguraEmail author
  • German-Lenin Dugarte-Peña
  • Fuensanta Medina-Dominguez
  • Alejandro Ruiz-Robles


Process assets (PAs) are acknowledged as contributing to the business value of organizations. Even so, they are still classed and employed as passive elements ready for use for special purposes. This paper considers how the evolution of active PAs over time can best influence the achievement of specific strategic objectives for decision making by CEOs regarding which PAs should be empowered and which do not require investment, etc. This proposal is formulated by rethinking PAs as dynamic elements armed with biomimetic intelligence. This means conceiving of PAs as live elements that interact and make use of swarm intelligence in order to provide a permanent overview of individual PA evolution and its impact on strategic goals. The NetLogo modelling and simulation tool was used to build the proposed model. The input for the simulation model was taken from a real experience of PAs previously identified and assessed in an information technology company.


Intelligent process assets Intellectual capital Process assets management Strategic goals achievement 



This research has been partially funded by Spanish Ministry of Science and Technology, project no. TIN2011-27244.


  1. Aboody, D., & Lev, B. (1998). The value relevance of intangibles: the case of software capitalization. Journal of Accounting Research, 36(3), 161–191. doi: 10.2307/2491312.CrossRefGoogle Scholar
  2. Acuña, S. T., & Sánchez-Segura, M. I. (2006). New trends in software process modeling. Singapore: World Scientific Publishing Co. Pte. Ltd.CrossRefGoogle Scholar
  3. April, A., & Laporte, C. (2009). An overview of software engineering process and its improvement. In E. W. Duggan & H. Reichgelt (Eds.), Encyclopedia of information Science and Technology (pp. 2984–2989). Hershey: Idea Group Publishing.Google Scholar
  4. Axtle, M. (2006). Intellectual capital (intangible assets) valuation considering the context. Journal of Business, 4(9), 35–42.Google Scholar
  5. Baddoo, N., & Hall, T. (2002). Motivators of software process improvement: an analysis of practitioners’ views. Journal of Systems and Software, 62(2), 85–96. doi: 10.1016/S0164-1212(01)00125-X.CrossRefGoogle Scholar
  6. Blackler, F. (1996). Knowledge, knowledge work and organizations: an overview and interpretation. Organization Studies, 16(6), 1021–1046.CrossRefGoogle Scholar
  7. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.Google Scholar
  8. Chrissis, M. B., Konrad, M., & Shrum, S. (2011). CMMI for Development®: Guidelines for Process Integration and Product Improvement. (I. Pearson Education, Ed.) (Third Edit). Boston, MA: Software Engineering Institute. Retrieved from
  9. Clements, P., & Bass, L. (2010). The business goals viewpoint. IEEE Software, 27(6), 38–45. doi: 10.1109/MS.2010.116.CrossRefGoogle Scholar
  10. Dugarte-Peña, G. L. (2015). Modelado y Simulación de un Proceso de Desarrollo de Software dirigido por el Método de Craig Larman: Una aplicación de la dinámica de sistemas. (Modelling and Simulation of a Craig Larman Methods’ Software Development Process: A Systems Dynamics Approach). Universidad Carlos III de Madrid. Retrieved from
  11. Ebubekir, K. (2010). The Bees Algorithm Theory, Improvements and Applications. Manufacturing Engineering Centre School of Engineering University of Wales; Cardiff United Kingdom, (March).Google Scholar
  12. Edvinsson, L. (1997). Developing intellectual capital at Skandia. Long Range Planning, 30(3), 366–373. doi: 10.1016/S0024-6301(97)90248-X.CrossRefGoogle Scholar
  13. Forrester, J. W. (1998). System dynamics, alternative futures, and scenarios. In 16th International Conference of The System Dynamics Society. Québec City: The System Dynamics Society. Retrieved from
  14. Guo, Y., & Wilensky, U. (2014). NetLogo BeeSmart Hive Finding model. Evanston, IL, USA: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Retrieved from
  15. Hall, R. (1993). A framework unking intangible resources and capabilities to sustainable competitive advantage. Strategic Management Journal, 14(7), 607–618. doi: 10.1002/smj.4250140804.CrossRefGoogle Scholar
  16. Housel, T. J., & Nelson, S. K. (2005). Knowledge valuation analysis: applications for organizational intellectual capital. Journal of Intellectual Capital, 6(4), 544–557. doi: 10.1108/14691930510628816.CrossRefGoogle Scholar
  17. Kogut, B., & Zander, U. (1992). Knowledge of the firm, combinative capabilities, and the replication of technology. Organization Science, 3(3), 383–397. doi: 10.1287/orsc.3.3.383.CrossRefGoogle Scholar
  18. Li, S. T., & Tsai, M. H. (2009). A dynamic taxonomy for managing knowledge assets. Technovation, 29(4), 284–298. doi: 10.1016/j.technovation.2008.10.002.CrossRefGoogle Scholar
  19. Li, S.-T., Tsai, M.-H., & Lin, C. (2010). Building a taxonomy of a firm’s knowledge assets: a perspective of durability and profitability. Journal of Information Science, 36(1), 36–56. doi: 10.1177/0165551509347955.CrossRefGoogle Scholar
  20. Madachy, R. J. (2008). Software Process Dynamics. (IEEE Press, Ed.). Hoboken: John Wiley & Sons, Inc..Google Scholar
  21. Martı, G., Delgado-verde, M., Amores-salvado, J., & Navas-lo, E. (2013). Linking human, technological, and relational assets to technological innovation: exploring a new approach, (January), 123–132. doi: 10.1057/kmrp.2013.8.
  22. Nonaka, I., Toyama, R., & Konno, N. (2000). SECI, Ba and leadership: a unified model of dynamic knowledge creation. Long Range Planning, 33(1), 5–34. doi: 10.1016/S0024-6301(99)00115-6.CrossRefGoogle Scholar
  23. Oliveira, L., Rodrigues, L. L., & Craig, R. (2010). Intangible assets and value relevance: evidence from the Portuguese stock exchange. The British Accounting Review, 42(4), 241–252. doi: 10.1016/ Scholar
  24. P.M.I. (2013a). A guide to the project management body of knowledge (PMBOK® guide). (Fifth edit). Pennsylvania: Project Management Institute, Inc. Retrieved from
  25. P.M.I. (2013b). Software extension to the PMBOK® guide (5th ed.). Pennsylvania: Project Management Institute, Inc.Google Scholar
  26. Resnick, M. (1994). Turtles, termites and traffic jams: Explorations in massively parallel microworlds. Cambridge: MIT Press.Google Scholar
  27. Ross, J., Ross, G., Dragonetti, N., & Edvinsson, L. (1998). Intellectual capital navigating in the new business landscape. New York: New York University Press.Google Scholar
  28. Ruiz-Robles, R.-A. (2011). Aproximación a un Marco de Trabajo para la Mejora de la Productividad de Organizaciones de Desarrollo de Software a través de la Gestión del Conocimiento (An Approach to a Framework for Software Development Organizations’ Productivity Improvement through Knowledge Management. Carlos III University of Madrid. Retrieved from
  29. Ruiz-Robles, R.-A. Sanchez-Segura, M.I. (2015). Process Assets Characterization: A Practical Example. is Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Based on a work at
  30. Sanchez-Segura, M.-I., Medina-Dominguez, F., & Ruiz-Robles, A. (2016). Uncovering hidden process assets: A case study. Information Systems Frontiers, 9. doi: 10.1007/s10796-016-9622-5.
  31. Seeley, T. D. (2011). Five habits of highly effective honeybees (and what we can learn from them). In Honeybee Democracy. Princeton: Princeton University Press.Google Scholar
  32. Seleim, A., Ashour, A., & Bontis, N. (2007). Human capital and organizational performance: a study of Egyptian software companies. Management Decision, 45(4), 789–801. doi: 10.1108/00251740710746033.CrossRefGoogle Scholar
  33. Software Engineering Institute. (2010). CMMI for Development, Version 1.3, (November). Retrieved from
  34. Ståhle, S., & Ståhle, P. (2012). Towards measures of national intellectual capital: an analysis of the CHS model. Journal of Intellectual Capital, 13(2), 164–177. doi: 10.1108/14691931211225012.CrossRefGoogle Scholar
  35. Stewart, T., & Ruckdeschel, C. (1998). Intellectual capital: The new wealth of organizations. Performance Improvement.Google Scholar
  36. Verdun, J., Paguas, B. D., & Alberti, H. G. (2011). Taxonomy of indicators of intangible assets for the government IT. In 6th Iberian Conference on Information Systems and Technologies (CISTI 2011) (pp. 1–6).Google Scholar
  37. Wilenski, U. (1999). NetLogo. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University. Retrieved from
  38. Yuce, B., Packianather, M., Mastrocinque, E., Pham, D., & Lambiase, A. (2013). Honey bees inspired optimization method: the bees algorithm. Insects, 4(4), 646–662. doi: 10.3390/insects4040646.CrossRefGoogle Scholar
  39. Zhang, Y., Agarwal, P., Bhatnagar V., Balochian, S. & Yan, J. (2013). Swarm Intelligence and Its Applications. Hindawi Publishing Corporation: The Scientific World Journal, 2013, p.3. Available at:  10.1155/2013/528069.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Carlos III University of MadridMadridSpain
  2. 2.University of PiuraPiuraPeru

Personalised recommendations