Information Systems Frontiers

, Volume 19, Issue 2, pp 321–336 | Cite as

Challenges and opportunities in renovating public sector information by enabling linked data and analytics

  • Spiros Mouzakitis
  • Dimitris Papaspyros
  • Michael Petychakis
  • Sotiris Koussouris
  • Anastasios Zafeiropoulos
  • Eleni Fotopoulou
  • Lena Farid
  • Fabrizio Orlandi
  • Judie Attard
  • John Psarras


Linked Data has become the current W3C recommended approach for publishing data on the World Wide Web as it is sharable, extensible, and easily re-usable. An ecosystem of linked data hubs in the Public Sector has the potential to offer significant benefits to its consumers (other public offices and ministries, as well as researchers, citizens and SMEs), such as increased accessibility and re-use value of their data through the use of web-scale identifiers and easy interlinking with datasets of other public data providers. The power and flexibility of the schema-defying Linked Data, however, is counterbalanced by inborn factors that diminish the potential for cost-effective and efficient adoption by the Public Sector. The paper analyzes these challenges in view of the current state-of-the-art in linked data technologies and proposes a technical framework that aims to hide the underlying complexity of linked data while maintaining and promoting the interlinking capabilities enabled by the Linked Data Paradigm. The paper presents the innovations behind our proposed solutions as well as their advantages, especially for the non-expert users.


Linked data Public sector information Open data RDF Analytics 


  1. Aasman, J. (2006). Allegro graph: RDF triple database. Cidade: Oakland Franz Incorporated.Google Scholar
  2. Analysis Report of Public Sector Data and Knowledge Sources”, (2012) ENGAGE Project, available at http://www.engage- project.euGoogle Scholar
  3. Apache Jena (2012) “The apache software foundation.”Google Scholar
  4. Apache Jena (2013)”Reasoners and rule engines: Jena inference support.” The Apache Software Foundation.Google Scholar
  5. Auer, Sören, et al. (2009) “Triplify: light-weight linked data publication from relational databases.” Proceedings of the 18th international conference on World wide web. ACM.Google Scholar
  6. Auer, Sören, Sebastian Dietzold, and Thomas Riechert. (2006) “OntoWiki–a tool for social, semantic collaboration.” The Semantic Web-ISWC 2006. Springer Berlin Heidelberg, 736–749.Google Scholar
  7. Berners-Lee, Tim (2006–07-27). “Linked Data—Design Issues”. W3C, available at:
  8. Bizer, Christian. (2003) “D2r map-a database to rdf mapping language.”, available at: Google Scholar
  9. Bizer, Christian, and Richard Cyganiak. (2006) “D2r server-publishing relational databases on the semantic web.” Poster at the 5th International Semantic Web Conference.Google Scholar
  10. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., & Hellmann, S. (2009). DBpedia-a crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World Wide Web, 7(3), 154–165.CrossRefGoogle Scholar
  11. Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003) Latent Dirichlet allocation. Journal of Machine Learning Research (March 2003). 3:993–1022.Google Scholar
  12. Broekstra, Jeen, Arjohn Kampman, and Frank Van Harmelen. (2002) “Sesame: A generic architecture for storing and querying rdf and rdf schema.” The Semantic Web—ISWC 2002. Springer Berlin Heidelberg, 54–68.Google Scholar
  13. Brunetti, J. M., Auer, S., García, R., Klímek, J., & Necˇaský, M. (2013). Formal Linked Data Visualisation Model, in proceedings of international conference on information integration and web- based applications & services. Vienna: Austria.Google Scholar
  14. Camarda, Diego Valerio, Silvia Mazzini, and Alessandro Antonuccio. (2012) “LodLive, exploring the web of data.” Proceedings of the 8th International Conference on Semantic Systems. ACM.Google Scholar
  15. Dadzie, A. & Rowe, M., (2011) Approaches to Visualising Linked Data: A Survey, semantic web, Nr. 2, p. 89–124.Google Scholar
  16. Erling, Orri, and Ivan Mikhailov. (2009) “RDF Support in the Virtuoso DBMS.”Networked Knowledge-Networked Media. Springer Berlin Heidelberg, 7–24.Google Scholar
  17. Flint SPARQL Editor, (2016) available at:
  18. García-Pablos, A., Cuadros, M., & Rigau, G. (2013). OpeNER demo: Open polarity enhanced named entity recognition, 6th language technology conference. Poznán, Poland: LTC.Google Scholar
  19. Gruff: Grapher-Based Triple-Store Browser for AllegroGraph, (2016) available at: Scholar
  20. Güting, Ralf Hartmut. (1994) “GraphDB: Modeling and querying graphs in databases.”VLDB. Vol. 94.Google Scholar
  21. Heim, Philipp, Jürgen Ziegler, and Steffen Lohmann. (2008) “gFacet: A Browser for the Web of Data.” Proceedings of the International Workshop on Interacting with Multimedia Content in the Social Semantic Web (IMC-SSW’08). Vol. 417.Google Scholar
  22. Introduction to Apache Any23, (2016) available at:
  23. Introduction to Linguistic Annotation and Text Analytics (2009) Synthesis Lectures on Human Language Technologies, Morgan & Claypool Publishers, 2009;4:1, 1–165.Google Scholar
  24. Karvounarakis, Grigoris, Zachary G. Ives, and Val Tannen. (2010) “Querying data provenance.” Proceedings of the 2010 ACM SIGMOD international conference on management of data. ACM.Google Scholar
  25. Langegger, A., & Wolfram, W. (2009). XLWrap–querying and integrating arbitrary spreadsheets with SPARQL. Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  26. LATC Project, (2016) available at
  27. LinDA Project (2016), available at
  28. LOD visualization tool, (2016) available at:
  29. LOD2 Project, (2016) available at
  30. Manteli, C., Hoof B. van, H. van Vliet and W. van Duinkerken, (2014) Overcoming challenges in global software development: The role of brokers, IEEE eighth international conference on research challenges in, pp 3542–3545, Morocco.Google Scholar
  31. Martin, M., Abicht, K., Stadler, C., Auer, Sö., Ngomo, A.-C. N. & Soru, T. (2015). CubeViz -- Exploration and Visualization of Statistical Linked Data. Proceedings of the 24th International Conference on World Wide Web, WWW 2015.Google Scholar
  32. Mendes, Pablo N., et al. (2011) “DBpedia spotlight: shedding light on the web of documents.” Proceedings of the 7th International Conference on Semantic Systems. ACM.Google Scholar
  33. Franck Michel, Johan Montagnat, Catherine Faron-Zucker: (2013) A survey of RDB to RDF translation approaches and tools. Rapport de Recherche. ISRN I3S/RR 2013–04-FR. November 2013.Google Scholar
  34. Mutlu, B. and Höfler ,P.. (2014) Suggesting visualisations for published data.Google Scholar
  35. Mutlu, B., Höfler, P., Sabol, V., Tschinkel, G., & Granitzer, M. (2013). Automated visualization support for linked research data. In S. Lohmann (Ed.), I-SEMANTICS (Posters & Demos), volume 1026 of CEUR workshop proceedings, pages 40–44 Google Scholar
  36. Prateek Jain, Pascal Hitzler, Amit Sheth, Kunal Verma, Peter Z (2010) Ontology Alignment for Linked Open Data. Yeh. In proceedings of the 9th International Semantic Web Conference, ISWC, Shanghai, China, 6496:402–417Google Scholar
  37. Prud’Hommeaux, Eric, and Andy Seaborne. (2008) “SPARQL query language for RDF.” W3C recommendation 15.Google Scholar
  38. Prud’hommeaux, Eric, Jose Emilio Labra Gayo, and Harold Solbrig. (2014) “Shape expressions: an RDF validation and transformation language.” Proceedings of the 10th International Conference on Semantic Systems. ACM.Google Scholar
  39. Quepy, A framework to convert natural language to database queries. (2016) Available at:
  40. Rietveld, Laurens, and Rinke Hoekstra. (2013) “Yasgui: Not just another sparql client.”The Semantic Web: ESWC 2013 Satellite events. Springer Berlin Heidelberg, 78–86.Google Scholar
  41. Rohloff, Kurt, et al. (2007) “An evaluation of triple-store technologies for large data stores.” On the Move to Meaningful Internet Systems 2007: OTM 2007 workshops. Springer Berlin Heidelberg.Google Scholar
  42. Scharffe, F., Atemezing, G., Troncy, R., Gandon, F., Villata, S., Bucher, B., Hamdi, F., Bihanic, L., Kepeklian, G., Cotton, F., Euzenat, J., Fan, Z., Vandenbussche P.-Y., Vatant, B.: (2012) Enabling linked-data publication with the datalift platform. In (AAAI 2012) Workshop on semantic cities, Toronto.Google Scholar
  43. SPARQL 1.1 Query Language, (2013) W3C Recommendation 21 March 2013, available at
  44. Sparqlify: a SPARQL-SQL rewriter, (2016) available at: Scholar
  45. Sporny, Manu, et al. (2014) “JSON-LD 1.0.” W3C Recommendation, January 16, 2014, available at:
  46. Stardog Enterprise Data Unification with Smart Graphs., (2016) available at:
  47. Verborgh, Ruben, et al. (2014) “Web-scale querying through linked data fragments.” Proceedings of the 7th Workshop on Linked Data on the Web (LDOW2014.Google Scholar
  48. Voigt, M., Pietschmann, S., & Meißner, K., (2013a) A Semantics- based, End-user-centered Information Visualisation Process for Semantic Web Data, in Semantic Models for Adaptive In- teractive Systems, Springer, p. 83–107.Google Scholar
  49. Voigt, Martin, Stefan Pietschmann, and Klaus Meißner. (2013b) “A semantics-based, end-user-centered information visualization process for semantic web data.”Semantic Models for Adaptive Interactive Systems. Springer London, 83–107.Google Scholar
  50. W3C on Linked Data, (2016) available at
  51. Zaihrayeu, I., et al. (2007). From web directories to ontologies: Natural language processing challenges. Berlin Heidelberg: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Spiros Mouzakitis
    • 1
  • Dimitris Papaspyros
    • 1
  • Michael Petychakis
    • 1
  • Sotiris Koussouris
    • 1
  • Anastasios Zafeiropoulos
    • 2
  • Eleni Fotopoulou
    • 2
  • Lena Farid
    • 3
  • Fabrizio Orlandi
    • 4
  • Judie Attard
    • 4
  • John Psarras
    • 1
  1. 1.National Technical University of AthensZografouGreece
  2. 2.UBITECH Ltd, Thessalias 8 & Etolias 10AthensGreece
  3. 3.Fraunhofer FOKUSBerlinGermany
  4. 4.University of BonnBonnGermany

Personalised recommendations