Information Systems Frontiers

, Volume 17, Issue 5, pp 1161–1176 | Cite as

IPTV parental control: A collaborative model for the Social Web

  • Ana Fernández-Vilas
  • Rebeca P. Díaz-Redondo
  • Sandra Servia-Rodríguez


Whether traditional TV or Internet multimedia content, parental control systems based on the intermediate filtering criteria of broadcasters or content producers may be not flexible enough. From parent’s perspective, the ideal scenario would be one in which they could dynamically decide about the suitability of any content. Since this desired scenario entails many practical problems, we propose an intermediate solution where parents delegate the decision of blocking any piece of TV content on a trustworthy set of parents. Our approach provides a collaborative parental control model based on two pillar: (1) a parenting social network where parents interact, freely give their opinion about TV content and tag this content (collaborative tagging); and (2) a model of trust relationship between parents. Regarding the deployment of parental control, we introduce a parental monitoring system for DVB-IPTV content, which is based on social technologies. The proposal combines information from the service provider and from parents in a social network to predict whether content should be blocked.


Parental monitoring Social trust Collaborative tagging Folksonomy Tag cloud Recommender IPTV 



This work was supported in part by the Ministerio de Educación y Ciencia (Gobierno de España) research project TIN2010-20797 (partly financed with ERDF funds); by the European Regional Development Fund (ERDF) and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC); by the Spanish Government and the European Regional Development Fund (ERDF) under project TACTICA.


  1. Andersen, R., Borgs, C., Chayes, J., Feige, U., et al. (2008). Trust-based recommendation systems: an axiomatic approach. 17th Int. Conf. on World Wide Web (WWW).Google Scholar
  2. Castells, P., Fernández, M., & Vallet, D. (2007). An adaptation of the vector-space model for ontology-based information retrieval. IEEE Transactions on Knowledge and Data Engineering, 19(2), 261–272.CrossRefGoogle Scholar
  3. Chang, J.-H., Lai, C.-F., Huang, Y.-M., & Chao, H.-C. (2010). 3PRS: a personalized popular program recommendation system for digital TV for P2P social networks. Multimedia Tools and Applications, 47(1), 31–48.CrossRefGoogle Scholar
  4. Chen, Z. M., & Jiang, Y. (2010). A collaborative filtering recommendation algorithm based on user interest change and trust evaluation. International Journal of Digital Content Technology and its Applications, 4(9), 106–113.CrossRefGoogle Scholar
  5. Díaz Redondo, R. P., Fernández Vilas, A., Pazos Arias, J. J., Ramos Cabrer, M., Gil Solla, A., & García Duque, J. (2012). Bringing content-awareness to Web-based IDTV advertising. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(3), 324–333.CrossRefGoogle Scholar
  6. Diaz-Sanchez, D., Marin, A., Almenarez, F., & Cortes, A. (2010). Social applications in the home network. IEEE Transactions on Consumer Electronics, 56(1), 220–225.CrossRefGoogle Scholar
  7. Digital Video Broadcasting (2010). Multimedia Home Platform (MHP) Specification 1.2.2. ETSI TS 102 727 v1.1.1.Google Scholar
  8. European Telecommunication Standards Institute (2008). Carriage of Bradband Content Guide (BCG) Information over Internet Protocol (IP) Technical Specification ETSI TS 102 539 V1.2.1.Google Scholar
  9. European Travel Commission (2013). Social networking and UGC. Scholar
  10. Evain, J. P., & Martínez, J. M. (2007). TV-anytime phase 1 and MPEG-7. Journal of the American Society of Information Science and Technology, 58(9), 1367–1373.CrossRefGoogle Scholar
  11. Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using wikipedia-based explicit semantic analysis. Proceedings of the 20th international joint conference on Artifical intelligence.Google Scholar
  12. Gentile, D. A., Choo, H., Liau, A., Sim, T., Li, D., Fung, D., & Khoo, A. (2011). Pathological video game use among youths: a two-year longitudinal study. Pediatrics, 127, e319–329.Google Scholar
  13. Gruber, T. (2007). Ontology of folksonomy: a mash-up of apples and oranges. International Journal On Semantic Web and Information Systems, 3(2), 1–11.CrossRefGoogle Scholar
  14. Guha, R., Kumar, R., Raghavan, P., & Tomkins, A. (2004). Propagation of Trust and Distrust. 13th Int. Conf. on World Wide Web (WWW).Google Scholar
  15. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Q, 28(1), 75–105.Google Scholar
  16. Hotto, A., Jaschke, R., Schmitz, C., & Stummer, G. (2006). Information retrieval in folksonomies: Search and ranking. In The Semantic Web: Research and applications (Vol. 4519, págs. 624–639). Springer.Google Scholar
  17. Huberman, S. A., & Golder, B. A. (2006). The structure of collaborative tagging systems. Journal of Information Science, 32(2), 198–208.CrossRefGoogle Scholar
  18. Jamali, M., & Ester, M. (2009). TrustWalker: a random walk model for combining trust-based and item-based recommendation. Int. Conf. on Knowledge Discovery and Data Mining (KDD), (págs. 397–406).Google Scholar
  19. Keller, D., & Verhulst, S. (2000). Parental control in a converged communications environment. Self-regulation, technical devices and meta-information. Final report for the DVB regulatory group, October 2000.Google Scholar
  20. Kim, J., Jeong, D., & Baik, D. (2009). Ontology-based semantic recommendation system in home nework environment. IEEE Transactions on Consumer Electronics, 55(3), 1178–1184.CrossRefGoogle Scholar
  21. Krcmar, M., & Cantor, J. (1997). The role of television advisories and ratings in parent‐child discussion of television viewing choices. Journal of Broadcasting & Electronic Media, 41(3), 393–411.Google Scholar
  22. Lapierre, M. A., Taylor Piotrowski, J., & Linebarger, D. L. (2012). Background television in the homes of US children. Pediatrics, 130, 1–8.CrossRefGoogle Scholar
  23. Lathia, N., Hailes, S., & Capra, L. (2008). Trust-based collaborative filtering. International Federation for Information Processing (IFIP).Google Scholar
  24. Li, Y. M., & Kao, C. P. (2009). TREPPS: a trust-based recommender system for peer production services. Expert Systems with Applications, 36(2), 3263–3277.CrossRefGoogle Scholar
  25. Maisonneuve, J., Deschanel, M., Heiles, J., Li, W., Liu, H., Sharpe, R., et al. (2009). An overview of IPTV standards development. IEEE Transactions on Broadcasting, 55(2), 315–328.CrossRefGoogle Scholar
  26. Martín-Vicente, M., Gil-Solla, A., Ramos-Cabrer, M., Blanco-Fernández, Y., & López-Nores, M. (2012). Semantic inference of user’s reputation and expertise to improve collaborative recommendations. Expert Systems With Applications, 39(9), 8248–8258.CrossRefGoogle Scholar
  27. Middleton, S. E., Shadbolt, N. R., & De Roure, D. C. (2004). Ontological user profiling in recommender systems. ACM Transactions on Information Systems, 22(1), 54–88.CrossRefGoogle Scholar
  28. Mitchell, K., Jones, A., Ishmael, J., & Race, N. J. (2011). Social TV: The impact of social awareness on content navigation within IPTV systems. Comput Entertain 9 (3).Google Scholar
  29. Moosavi, S., Nematbakhsh, M., & Khosravi Farsani, H. (2009). A semantic complement to enhance electronic market. Expert Systems with Applications, 36(2), 5768–5774.CrossRefGoogle Scholar
  30. Narasimhan, N., & Horozov, T. (2009). V clips: Using social bookmarking for content discovery in a fragmented TV ecosystem. In Proceedings of the 8th International Conference on Mobile and Ubiquitous Multimedia (MUM ‘09). New York: ACM.Google Scholar
  31. O’Keeffe, G. S., Clarke-Pearson, K., & Council on Communications and Media. (2011). The impact of social media on children, adolescents, and families. Pediatrics, 127(4), 800–804.Google Scholar
  32. Peffers, K., Tuunanen, T., Rothenberger, M, A., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77.Google Scholar
  33. PewResearchCenter (2013). 72% of Online Adults are Social Networking Sites Users. PewResearchCenter.
  34. Servia Rodríguez, S., & Fernandez, A. (2012). Inferring Ties for social-aware ambient intelligence: the Facebook case. 3rd Int. Symp. on Ambient Intelligence (ISAmI).Google Scholar
  35. Servia Rodríguez, S., Díaz Redondo, R. P., Fernández Vilas, A., Blanco Fernández, Y., & Pazos Arias, J. J. (2013a). A Tie Strength Based Model to Socially-Enhance Applications and its Enabling Implementation: mySocialSphere. Expert Systems With Applications.Google Scholar
  36. Servia Rodríguez, S., Fernández Vilas, A., Díaz Redondo, R. P., & Pazos Arias, J. J. (2013b). Inferring Contexts from Facebook Interactions: a Social Publicity Scenario. IEEE Transactions on Multimedia, 15(6), 1296–1303.Google Scholar
  37. Sotelo, R., Blanco-Fernández, Y., López Nores, M., Gil-Solla, A., & Pazos Arias, J. J. (2009). TV program recommendation for groups based on multidimensional TV-anytime classifications. IEEE Transactions on Consumer Electronics, 55(1), 248–256.CrossRefGoogle Scholar
  38. Specia, L., & Motta, E. (2006). Integrating folksonomies with the semantic web. In The semantic web: Research and applications (Vol. 4519, págs. 624–639). Springer.Google Scholar
  39. Stockhammer, T., & Heiles, J. (2011). DVB-IPTV conetnt download servies—overview and use cases. Multimedia Tools and Applications, 53(3), 533–555.CrossRefGoogle Scholar
  40. Strube, M., & Ponzetto, S. P. (2006). WikiRelate! computing semantic relatedness using wikipedia. Proceedings of the 21st national conference on Artificial intelligence. Google Scholar
  41. Sztompka, P. (2000). A sociological theory (Cambridge Cultural Social Studies). Cambridge University Press.Google Scholar
  42. Walter, F., Battiston, S., & Scheweitzer, F. (2008). A model of a trust-based recommendation system on a social network. Autonomous Agents and Multi-Agent Systems, 16(1), 57–74.CrossRefGoogle Scholar
  43. Wang, X., Sun, L., Wang, Z., & Meng, D. (2012). Group Recommendation Using External Followee for Social TV. IEEE International Conference on Multimedia and Expo (ICME).Google Scholar
  44. Witten, I., & Miln, D. (2008). An effective, low-cost measure of semantic relatedness obtained from wikipedia links. Proceeding of AAAI Workshop on Wikipedia and Artificial Intelligence: an Evolving Synergy.Google Scholar
  45. Yeh, E., Ramage, D., Manning, C., Agirre, E., & Soroa, A. (2009). WikiWalk: Random walks on Wikipedia for semantic relatednes. Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language Processing, Association for Computational Linguistics.Google Scholar
  46. Zhang, F., Bai, L., & Gao, F. (2009). A user trust-based collaborative flitering recommendation algorithm. Information and Communication Security, 5927, 411–424.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ana Fernández-Vilas
    • 1
  • Rebeca P. Díaz-Redondo
    • 1
  • Sandra Servia-Rodríguez
    • 1
  1. 1.I&C Lab. AtlantTIC Research Center, University of VigoVigoSpain

Personalised recommendations