Information Systems Frontiers

, Volume 16, Issue 1, pp 95–111 | Cite as

Phone2Cloud: Exploiting computation offloading for energy saving on smartphones in mobile cloud computing

  • Feng Xia
  • Fangwei Ding
  • Jie Li
  • Xiangjie Kong
  • Laurence T. Yang
  • Jianhua Ma
Article

Abstract

With prosperity of applications on smartphones, energy saving for smartphones has drawn increasing attention. In this paper we devise Phone2Cloud, a computation offloading-based system for energy saving on smartphones in the context of mobile cloud computing. Phone2Cloud offloads computation of an application running on smartphones to the cloud. The objective is to improve energy efficiency of smartphones and at the same time, enhance the application’s performance through reducing its execution time. In this way, the user’s experience can be improved. We implement the prototype of Phone2Cloud on Android and Hadoop environment. Two sets of experiments, including application experiments and scenario experiments, are conducted to evaluate the system. The experimental results show that Phone2Cloud can effectively save energy for smartphones and reduce the application’s execution time.

Keywords

Mobile cloud computing Computation offloading Energy efficiency Smartphone Execution time 

References

  1. Ananthanarayanan, G., & Stoica, I. (2009). Blue-Fi: enhancing Wi-Fi performance using bluetooth signals. In Proceedings ACM MobiSys’09 (pp. 249–261). Krakow.Google Scholar
  2. Aggarwal, B., Chitnis, P., Dey, A., Jain, K., Navda, V., Padmanabhan, V.N., Ramjee, R., Schulman, A., Spring, N. (2010). Stratus: energy-efficient mobile communication using cloud support. In Proceedings ACM SIGCOMM’10 (pp. 477–478). New Delhi.Google Scholar
  3. Balasubramanian, A., Mahajan, R., Venkataramani, A. (2010). Augmenting mobile 3G using WiFi. In Proceedings ACM MobiSys’10 (pp. 209–222). Chicago.Google Scholar
  4. Brakmo, L.S., Wallach, D.A., Viredaz, M.A. (2004). μSleep: a technique for reducing energy consumption in handheld devices. In Proceedings MobiSys’04 (pp. 12–22). Boston.Google Scholar
  5. Burgstahler, L., & Neubauer, M. (2002). New modifications of the exponential moving average algorithm for bandwidth estimation. In Proceedings of the 15th ITC specialist seminar.Google Scholar
  6. Chen, G., Kang, B.T., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Chandramouli, R. (2004). Studying energy trade offs in offloading computation/compilation in java-enabled mobile devices. IEEE Transactions on Parallel and Distributed Systems, 15(9), 795– 809.CrossRefGoogle Scholar
  7. Chen, S., Liu, Y., Gorton, I., Liu, A. (2005). Performance prediction of component-based applications. Journal of Systems and Software, 74(1), 35–43.CrossRefGoogle Scholar
  8. Chun, B.G., & Maniatis, P. (2010). Dynamically partitioning applications between weak devices and clouds. In Proceedings of the 1st ACM workshop on mobile cloud computing & services: social networks and beyond (MCS’10) (p. 7). San Francisco: ACM Press.Google Scholar
  9. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R., Bahl, P. (2010). MAUI: making smartphones last longer with code offload. In Proceedings ACM MobiSys’10 (pp. 49–62). San Francisco.Google Scholar
  10. Ding, F., Xia, F., Zhang, W., Zhao, X., Ma, C. (2011). Monitoring energy consumption of smartphones. In Proceedings of 2011 international conference on internet of things and 4th international conference on cyber, physical and social computing (iThings/CPSCom) (pp. 610–613). Dalian.Google Scholar
  11. Engblom, J., Ermedahl, A., Sjodin, M., Gustafsson, J., Hansson, H. (2003). Worst-case execution-time analysis for embedded real-time systems. International Journal on Software Tools for Technology Transfer, 4(4), 437–455.CrossRefGoogle Scholar
  12. Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., Milojicic, D. (2004). Adaptive offloading for pervasive computing. IEEE Pervasive Computing, 3(3), 66–73.CrossRefGoogle Scholar
  13. Heikkinen, M.V., Nurminen, J.K., Smura, T., Hammainen, H. (2012). Energy efficiency of mobile handsets: measuring user attitudes and behavior. Telematics and Informatics, 29(4), 387–399.CrossRefGoogle Scholar
  14. Jongerden, M.R., & Haverkort, B.R. (2009). Which battery model to use?IET Software, 3(6), 445–457.CrossRefGoogle Scholar
  15. Ju, Y., Min, C., Lee, Y., Yu, J., Song, J. (2012). An efficient dataflow execution method for mobile context monitoring applications. In Proceedings IEEE PerCom’12 (pp. 116–121). Lugano.Google Scholar
  16. Kemp, R., Palmer, N., Kielmann, T., Bal, H. (2010a). Cuckoo: a computation offloading framework for smartphones. Mobile Computing, Application, and Services, 76, 59–79.CrossRefGoogle Scholar
  17. Kemp, R., Palmer, N., Kielmann, T., Bal, H. (2010b). The smartphone and the cloud: power to the user. Mobile Computing, Application, and Services, 76, 342–348.CrossRefGoogle Scholar
  18. Kemp, R., Palmer, N., Kielmann, T., Bal, H. (2012). Energy efficient information monitoring applications on smartphones through communication offloading, lecture notes of the institute for computer sciences. Social Informatics and Telecommunications Engineering, 95, 60–79.Google Scholar
  19. Kim, J., Kang, K., Shim, H., Hwangbo, W., Kyung, C.M. (2007). Fast estimation of software energy consumption using IPI (Inter-Prefetch Interval) energy model. In Proceedings of IFIPWG 10.5 international conference on very large scale integration of system-onchip (pp. 224–229). Atlanta.Google Scholar
  20. Kirner, R., Kadlec, A., Puschner, P. (2009). Precise worst-case execution time analysis for processors with timing anomalies. In Proceedings 21st euromicro conference on real-time systems (ECRTS) (pp. 119–128). Dublin.Google Scholar
  21. Kosta, S., Aucinas, A., Pan, H., Mortier, R., Zhang, X. (2012). ThinkAir: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In Proceedings INFOCOM (pp. 945–953). Orlando.Google Scholar
  22. Kumar, K., & Lu, Y.H. (2010). Cloud computing for mobile users: can offloading computation save energy?Computer, 43(4), 51–56.CrossRefGoogle Scholar
  23. Liu, J., Kumar, K., Lu, Y.H. (2010). Tradeoff between energy savings and privacy protection in computation offloading. In ACM/IEEE international symposium on low power electronics and design (pp. 213–218).Google Scholar
  24. Mahmud, K., Inoue, M., Murakami, H., Hasegawa, M., Morikawa, H. (2005). Energy consumption measurement of wireless interfaces in multi-service user terminals for heterogeneous wireless networks. IEICE Transactions on Communications, 88(3), 1097–1110.CrossRefGoogle Scholar
  25. Miettinen, A.P., & Nurminen, J.K. (2010). Energy efficiency of mobile clients in cloud computing. In Proceedings of the 2nd USENIX conference on hot topics in cloud computing (pp. 4). Berkeley.Google Scholar
  26. Nimmagadda, Y., Kumar, K., Lu, Y.H., Lee, C.S.G. (2010). Real-time moving object recognition and tracking using computation offloading. In Proceedings IEEE international conference on intelligent robots and systems (pp. 2449–2455). Taipei.Google Scholar
  27. Ou, S., Yang, K., Liotta, A. (2006). An adaptive multi-constraint partitioning algorithm for offloading in pervasive systems. In Proceedings IEEE PerCom’06 (pp. 116–125). Pisa.Google Scholar
  28. Palit, R., Singh, A., Naik, K. (2008). Modeling the energy costs of applications on portable devices. In The 11th ACM international conference on modeling, analysis, and simulation of wireless and mobile systems (pp. 346–353). Vancouver.Google Scholar
  29. Pering, T., Agarwal, Y., Gupta, R., Want, R. (2006). Coolspots: reducing the power consumption of wireless mobile devices with multiple radio interfaces. In Proceedings ACM MobiSys’06 (pp. 220–232). Uppsala.Google Scholar
  30. Rozner, E., Navda, V., Ramjee, R., Rayanchu, S. (2010). NAPman: network-assisted power management for WiFi devices. In Proceedings ACM MobiSys’10 (pp. 91–106). San Francisco.Google Scholar
  31. Schoeberl, M., Puffitsch, W., Pedersen, R.U., Huber, B. (2010). Worst-case execution time analysis for a Java processor. Software: Practice and Experience, 40(6), 507–542.Google Scholar
  32. Sheng, X., Tang, J., Zhang, W. (2012). Energy-efficient collaborative sensing with mobile phones. In Proceedings IEEE INFOCOM (pp. 1916–1924). Orlando.Google Scholar
  33. Shih, E., Bahl, P., Sinclair, M.J. (2002). Wake on wireless: an event driven energy saving strategy for battery operated devices. In Proceedings ACM MobiCom’02 (pp. 160–171). Atlanta.Google Scholar
  34. Thimmarayaswamy, K., Dsouza, M.M., Varaprasad, G. (2011). Low power techniques for an android based phone. ACM SIGARCH Computer Architecture New, 39(2), 26–35.CrossRefGoogle Scholar
  35. Wen, Y., Zhang, W., Luo, H. (2012). Energy-optimal mobile application execution: taming resource-poor mobile devices with cloud clones. In Proceeding INFOCOM (pp. 2716–2720). Orlando.Google Scholar
  36. Xian, C., Lu, Y.H., Li, Z. (2007). Adaptive computation offloading for energy conservation on battery-powered systems. In International conference on parallel and distributed systems (pp. 1–8).Google Scholar
  37. Xiao, Y., Bhaumik, R., Yang, Z., Siekkinen, M., Savolainen, P., Yla-Jaaski, A. (2010). A system-level model for runtime power estimation on mobile devices. In 2010 IEEE/ACM international conference on green computing and communications (GreenCom) & 2010 IEEE/ACM international conference on cyber, physical and social computing (CPSCom) (pp. 27–34). Piscataway: IEEE Press.Google Scholar
  38. Zhang, T., Madhani, S., Gurung, P., van den Berg, E. (2005). Reducing energy consumption on mobile devices with WiFi interfaces. In Proceedings IEEE Globecom’05 (pp. 561–565). St. Louis.Google Scholar
  39. Zhou, R., Xiong, Y., Xing, G., Sun, L., Ma, J. (2010). ZiFi: wireless LAN discovery via ZigBee interference signatures. In Proceedings ACM MobiCom’10 (pp. 49–60). Chicago.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Feng Xia
    • 1
  • Fangwei Ding
    • 1
  • Jie Li
    • 1
  • Xiangjie Kong
    • 1
  • Laurence T. Yang
    • 2
  • Jianhua Ma
    • 3
  1. 1.School of SoftwareDalian University of TechnologyDalianChina
  2. 2.Department of Computer ScienceSt. Francis Xavier UniversityNova ScotiaCanada
  3. 3.Faculty of Computer and Information SciencesHosei UniversityTokyoJapan

Personalised recommendations