Information Systems Frontiers

, Volume 16, Issue 4, pp 607–625 | Cite as

I-Competere: Using applied intelligence in search of competency gaps in software project managers

  • Ricardo Colomo-Palacios
  • Israel González-Carrasco
  • Jose Luis López-Cuadrado
  • Antonio Trigo
  • Joao Eduardo Varajao


People in software development teams are crucial in order to gain and retain strategic advantage inside a highly competitive market. As a result, human factors have gained attention in the software industry. Software Project Managers are decisive to achieve project success. A competent project manager is capable of solving any problem that an organization may encounter, regardless of its complexity. This paper presents I-Competere which is a tool developed to forecast competence gaps in key management personnel by predicting planning and scheduling competence levels. Based on applied intelligence techniques, I-Competere allows the forecast and anticipation of competence needs thus articulating personnel development tools and techniques. The results of the test, using several artificial neural networks, are more than promising and show prediction accuracy.


Competency gaps Software engineering Project manager Neural networks Machine learning Genetic algorithm 


  1. Aggarwal, K., Singh, Y., Chandra, P., & Puri, M. (2005). Bayesian regularization in a neural network model to estimate lines of code using function points. Journal of Computer Science, 1(4), 505–509.CrossRefGoogle Scholar
  2. Ahmeda, M., Saliub, M., & AlGhamdia, J. (2005). Adaptive fuzzy logic-based framework for software development effort prediction. Information and Software Technology, 47(1), 31–48.CrossRefGoogle Scholar
  3. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.CrossRefGoogle Scholar
  4. Aramo-Immonen, H., Bikfalvi, A., Mancebo, N., Vanharanta, H. (2011). Project managers competence identification. International Journal of Human Capital and Information Technology Professionals (IJHCITP),2(1), 33–47.CrossRefGoogle Scholar
  5. Arbib, M. (1995). The handbook of brain theory and neural networks. Cambridge: MIT Press.Google Scholar
  6. Barr, J., & Saraceno, F. (2002). A computational theory of the firm. Journal of Economic Behavior & Organization, 49(3), 345–361.CrossRefGoogle Scholar
  7. Bascil, M., & Temurtas, F. (2011). A study on hepatitis disease diagnosis using multilayer neural network with levenberg marquardt training algorithm. Journal of Medical Systems, 35, 433–436. doi: 10.1007/s10916-009-9378-2.CrossRefGoogle Scholar
  8. Bermejo, P., Joho, H., Joemon, M., Villa, R. (2009). Comparison of feature construction methods for video relevance prediction. In Advances in multimedia modeling. Proceedings of 15th international multimedia modeling conference, MMM 2009. Sophia-Antipolis, France, 7–9 January 2009 (pp. 185–196).Google Scholar
  9. Bisagni, C., Lanzi, L., Ricci, S. (2002) Optimization of helicopter subfloor components under crashworthiness requirements using neural networks. Journal of Aircraft, 39(2), 296–304.CrossRefGoogle Scholar
  10. Breiman, L., & Spector, P. (1992). Submodel selection and evaluation in regression. The x-random case. International Statistical Review, 60(3), 291–319.CrossRefGoogle Scholar
  11. Burger, M., & Neubauer, A. (2003). Analysis of tikhonov regularization for function approximation by neural networks. Neural Networks, 16(1), 79–90.CrossRefGoogle Scholar
  12. Bygstad, B., & Aanby, H. (2010). Ict infrastructure for innovation: a case study of the enterprise service bus approach. Information Systems Frontiers, 12(3), 257–265.CrossRefGoogle Scholar
  13. Cauchy, A. (1847). Methodes generales pour la resolution des systemes d’equations simultanees. Compte Rendu des Séances de L’Académie des Sciences, 25(3), 536–538.Google Scholar
  14. Cho, S.B., & Shimohara, K. (1998). Evolutionary learning of modular neural networks with genetic programming. Applied Intelligence, 9(3), 191–200.CrossRefGoogle Scholar
  15. Crawford, L. (2005). Senior management perceptions of project management competence. International Journal of Project Management, 23(1), 7–16.CrossRefGoogle Scholar
  16. Crowther, P., & Cox, R. (2005). A method for optimal division of data sets for use in neural networks. In Knowledge-based intelligent information and engineering systems. Proceedings of 9th international conference, KES 2005, Melbourne, Australia, 14–16 September 2005, Part IV (pp. 906–912).Google Scholar
  17. de Barcelos Tronto, I., da Silva, J., Sant’Anna, N. (2008). An investigation of artificial neural networks based prediction systems in software project management. Journal of Systems and Software, 81(3), 356–367.CrossRefGoogle Scholar
  18. Dietterich, T. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895–1923.CrossRefGoogle Scholar
  19. Durand, N., Alliot, J.M., Médioni, F. (2000). Neural nets trained by genetic algorithms for collision avoidance. Applied Intelligence, 13(3), 205–213.CrossRefGoogle Scholar
  20. El Emam, K., & Koru, A. (2008). A replicated survey of it software project failures. IEEE Software, 25(5), 84–90.CrossRefGoogle Scholar
  21. Fahlman, S. (1988). Faster-learning variations on back-propagation: an empirical study. In Proceedings of Connectionist Models Summer School (pp. 38–51).Google Scholar
  22. Feldt, R., Angelis, L., Torkar, R., & Samuelsson, M. (2010). Links between the personalities, views and attitudes of software engineers. Information and Software Technology, 52(6), 611–624.CrossRefGoogle Scholar
  23. Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance measures for classification. Pattern Recognition Letters, 30(1), 27–38.CrossRefGoogle Scholar
  24. Galinec, D. (2010). Human capital management process based on information technology models and governance. International Journal of Human Capital and Information Technology Professionals, 1(1), 44–60.CrossRefGoogle Scholar
  25. García-Crespo, A., González-Carrasco, I., Colomo-Palacios, R., López-Cuadrado, J., & Ruiz-Mezcua, B. (2011). Methodology for software development estimation optimization based on neural networks. IEEE Latin America Transactions, 9(3), 391–405.Google Scholar
  26. Garcia-Crespo, A., Ruiz-Mezcua, B., Fernandez, D., & Zaera, R. (2006). Prediction of the response under impact of steel armours using a multilayer perceptron. Neural Computing & Applications, 16(2), 147–154.CrossRefGoogle Scholar
  27. Garg, A., Goyal, D., & Lather, A. (2010). The influence of the best practices of information system development on software smes: a research scope. International Journal of Business Information Systems, 5(3), 268–290.CrossRefGoogle Scholar
  28. Geraldi, J., Lee-Kelley, L., & Kutsch, E. (2010). The titanic sunk, so what? Project manager response to unexpected events. International Journal of Project Management, 28(6), 547–558.CrossRefGoogle Scholar
  29. Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(3), 249–264.CrossRefGoogle Scholar
  30. Gibbs, W. (1994). Software’s chronic crisis. Scientific American, 271(3), 72–81.CrossRefGoogle Scholar
  31. Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks architectures. Neural Computation, 7(2), 219–269.CrossRefGoogle Scholar
  32. Glass, R. (2006). The standish report: does it really describe a software crisis? Communications of the ACM, 49(8), 15–16.CrossRefGoogle Scholar
  33. Gomez, I., & Martin, M.P. (2011). Prototyping an artificial neural network for burned area mapping on a regional scale in mediterranean areas using modis images. International Journal of Applied Earth Observation and Geoinformation, 13(5), 741–752.CrossRefGoogle Scholar
  34. Gonzalez-Carrasco, I., Garcia-Crespo, A., Ruiz-Mezcua, B., & Lopez-Cuadrado, J. (2012). An optimization methodology for machine learning strategies and regression problems in ballistic impact scenarios. Applied Intelligence, 36(2), 424–441.CrossRefGoogle Scholar
  35. Grochowski, M., & Dutch, W. (2007). Learning highly non-separable boolean functions using constructive feedforward neural network. In ICANN’07 proceedings of the 17th international conference on artificial neural networks (pp. 180–189).Google Scholar
  36. Haykin, S. (1994). Neural networks: A comprehensive foundation. Prentice Hall PTR.Google Scholar
  37. He, Y., & Sun, Y. (2001). Neural network-based l1-norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance. IEE Proceedings. Circuits, Devices and Systems, 148(4), 223–228.CrossRefGoogle Scholar
  38. Henderson, C., Potter, W., McClendon, R., & Hoogenboom, G. (2000). Predicting aflatoxin contamination in peanuts: a genetic algorithm/neural network approach. Applied Intelligence, 12(13), 183–192.CrossRefGoogle Scholar
  39. Henry, J. (2003). Software project management: A real-world guide to success. Addison Wesley Longman.Google Scholar
  40. Hestenes, R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409–436.CrossRefGoogle Scholar
  41. Hodgson, D. (2002). Disciplining the professional: the case of project management. Journal of Management Studies, 39(6), 803–821.CrossRefGoogle Scholar
  42. Huang, M., Tsou, Y., & Lee, S. (2006). Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge. Knowledge-Based Systems, 19(6), 396–403.CrossRefGoogle Scholar
  43. Jorgensen, M., & Molokken-Ostvold, K. (2006). How large are software cost overruns? A review of the 1994 chaos report. Information and Software Technology, 48(4), 297–301.CrossRefGoogle Scholar
  44. Kao, Y.T., & Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing, 8(2), 849–857.CrossRefGoogle Scholar
  45. Kelemenis, A., Ergazakis, K., & Askounis, D. (2011). Support managers’ selection using an extension of fuzzy topsis. Expert Systems with Applications, 38(3), 2774–2782.CrossRefGoogle Scholar
  46. Kumar, K.V., Ravi, V., Carr, M., & Raj Kiran, N. (2008). Software development cost estimation using wavelet neural networks. Journal of Systems and Software, 81(11), 1853–1867.CrossRefGoogle Scholar
  47. Kwak, Y. (2005). A brief history of project management. In The story of managing projects. Greenwood Publishing Group.Google Scholar
  48. Lanzi, L., Bisagni, C., & Ricci, S. (2004). Neural network systems to reproduce crash behavior of structural components. Computers & Structures, 82(1), 93–108.CrossRefGoogle Scholar
  49. Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathematics, II(2), 164–168.Google Scholar
  50. Li, J., Wu, C., & Wu, H. (2011). Wavelet neural network process control technology in the application of aluminum electolysis. In X. Wan (Ed.), Electrical power systems and computers. Lecture notes in electrical engineering (Vol. 99, pp. 937–941). Berlin: Springer.CrossRefGoogle Scholar
  51. Looney, C. (1993). Advances in feedforward neural networks: demystifying knowledge acquiring black boxes. Transactions on Knowledge and Data Engineering, 8(2), 211–226.CrossRefGoogle Scholar
  52. Majumder, M., Roy, P., & Mazumdar, A. (2007). Optimization of the water use in the river damodar in west Bengal in India: an integrated multi-reservoir system with the help of artificial neural network. Engineering Computing and Architecture, 1(2), 1–12, article 1192.Google Scholar
  53. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11(2), 431–441.CrossRefGoogle Scholar
  54. McConnell, S. (2004). Professional software development. Addison-Wesley.Google Scholar
  55. Morris, P., Crawford, L., Hodgson, D., Shepherd, M., & Thomas, J. (2006). Exploring the role of formal bodies of knowledge in defining a profession-the case of project management. International Journal of Project Management, 24(8), 710–721.CrossRefGoogle Scholar
  56. Muller, R., & Turner, J. (2007). Matching the project manager’s leadership style to project type. International Journal of Project Management, 25(1), 21–32.CrossRefGoogle Scholar
  57. Natarajan, T., Rajah, S., & Manikavasagam, S. (2011). Snapshot of personnel productivity assessment in Indian IT industry. International Journal of Information Technology Project Management, 2(1), 48–61.CrossRefGoogle Scholar
  58. Nelson, M., & Illingworth, W. (1991). A practical guide to neural nets. Reading: Addison-Wesley.Google Scholar
  59. Onita, C., & Dhaliwal, J. (2010). Alignment within the corporate IT unit: an analysis of software testing and development. European Journal of Information Systems, 20(1), 48–68.CrossRefGoogle Scholar
  60. O’Sullivan, D., & Dooley, L. (2010). Collaborative innovation for the management of information technology resources. International Journal of Human Capital and Information Technology Professionals, 1(1), 16–30.CrossRefGoogle Scholar
  61. Patnayakuni, R., & Ruppel, C. (2010). A socio-technical approach to improving the systems development process. Information Systems Frontiers, 12(2), 219–234.CrossRefGoogle Scholar
  62. Peng, X., Zhe, H., Guifang, G., Gang, X., Binggang, C., & Zengliang, L. (2011). Driving and control of torque for direct-wheel-driven electric vehicle with motors in serial. Expert Systems with Applications, 38(1), 80–86.CrossRefGoogle Scholar
  63. Pereira, J., Cerpa, N., Verner, J., Rivas, M., & Procaccino, J. (2008). What do software practitioners really think about project success: a cross-cultural comparison. Journal of Systems and Software, 81(6), 897–907.CrossRefGoogle Scholar
  64. Priddy, K., & Keller, P. (2005). Artificial neural networks: An introduction. SPIE Press.Google Scholar
  65. Principe, J., Euliano, N., & Lefebvre, W. (1999). Neural and adaptive systems: Fundamentals through simulations with CD-ROM. New York: Wiley.Google Scholar
  66. Principe, J., Lefebvre, C., Lynn, G., Fancourt, C., & Wooten, D. (2007). Neuro solutions documentation. NeuroDimension, Inc.Google Scholar
  67. Ramon y Cajal, S. (1894). The croonian lecture: La fine structure des centres nerveux. Proceedings of the Royal Society of London, 55, 444–468.CrossRefGoogle Scholar
  68. Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 445–471.CrossRefGoogle Scholar
  69. Roy, N., Potter, W., & Landau, D. (2004). Designing polymer blends using neural networks, genetic algorithms, and markov chains. Applied Intelligence, 20(3), 215–229.CrossRefGoogle Scholar
  70. Ruano-Mayoral, M., Colomo-Palacios, R., Garcia-Crespo, A., & Gomez-Berbis, J. (2010). Software project managers under the team software process: a study of competences. International Journal of Information Technology Project Management, 1(1), 42–53.CrossRefGoogle Scholar
  71. Shahhosseini, V., & Sebt, M. (2011). Competency-based selection and assignment of human resources to construction projects. Scientia Iranica, 18(2), 163–180.CrossRefGoogle Scholar
  72. Sokolova, M., Rasras, R., & Skopin, D. (2006). The artificial neural network based approach for mortality structure analysis. American Journal of Applied Science, 3(2), 1698–1702.CrossRefGoogle Scholar
  73. Songwu, L., Member, S., & Basar, T. (1998). Robust nonlinear system identification using neural network models. IEEE Transactions on Neural Networks, 9(3), 407–429.CrossRefGoogle Scholar
  74. Stamelos, I. (2010). Software project management anti-patterns. Journal of Systems and Software, 83(1), 52–59.CrossRefGoogle Scholar
  75. Stamelos, I. (2010). Software project management anti-patterns. Journal of Systems and Software, 83(1), 52–59.CrossRefGoogle Scholar
  76. Stavrou, E.T., Charalambous, C., & Spiliotis, S. (2007). Human resource management and performance: a neural network analysis. European Journal of Operational Research, 181(1), 453–467.CrossRefGoogle Scholar
  77. Su, Y., & Huang, C. (2007). Neural-network-based approaches for software reliability estimation using dynamic weighted combinational models. Journal of Systems and Software, 80(4), 606–615.CrossRefGoogle Scholar
  78. Swingler, K. (1996). Applying neural networks. A practical guide. Academic Press.Google Scholar
  79. Tang, F., Mu, J., & MacLachlan, D.L. (2010). Disseminative capacity, organizational structure and knowledge transfer. Expert Systems with Applications, 37(2), 1586–1593CrossRefGoogle Scholar
  80. Tarassenko, L. (1998). A guide to neural computing applications. Arnol/NCAF.Google Scholar
  81. Watanabe, J., & Maruyama, T. (2010). Software development industrialization by process-centered style. Fujitsu Scientific and Technical Journal, 46(2), 168–176.Google Scholar
  82. Wong, T., Wong, S., & Chin, K. (2011). A neural network-based approach of quantifying relative importance among various determinants toward organizational innovation. Expert Systems with Applications, 38(10), 13064–13072.CrossRefGoogle Scholar
  83. Wythoff, B. (1993). Backpropagation neural networks: a tutorial. Chemometrics and Intelligent Laboratory Systems, 18, 115–155.CrossRefGoogle Scholar
  84. Xie, C.-L., Chang, J.-Y., Shi, X.-C., & Dai, J.-M. (2010). Fault diagnosis of nuclear power plant based on genetic-rbf neural network. International Journal of Computer Applications in Technology, 39(1/2/3), 159–165.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ricardo Colomo-Palacios
    • 1
  • Israel González-Carrasco
    • 1
  • Jose Luis López-Cuadrado
    • 1
  • Antonio Trigo
    • 2
  • Joao Eduardo Varajao
    • 3
  1. 1.Department of Computer ScienceUniversidad Carlos IIILeganes (Madrid)Spain
  2. 2.Institute of Accounting and Administration of CoimbraCoimbraPortugal
  3. 3.University of Tras-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations