Information Systems Frontiers

, Volume 14, Issue 5, pp 999–1017 | Cite as

FAST: Fundamental Analysis Support for Financial Statements. Using semantics for trading recommendations

  • Alejandro Rodríguez-GonzálezEmail author
  • Ricardo Colomo-Palacios
  • Fernando Guldris-Iglesias
  • Juan Miguel Gómez-Berbís
  • Angel García-Crespo


Trading systems are tools to aid financial analysts in the investment process in companies. This process is highly complex because a big number of variables take part in it. Furthermore, huge sets of data must be taken into account to perform a grounded investment, making the process even more complicated. In this paper we present a real trading system that has been developed using semantic technologies. These cutting-edge technologies are very useful in this context because they enable the definition of schemes that can be used for storing financial information, which, in turn, can be easily accessed and queried. Additionally, the inference capabilities of the existing reasoning engines enable the generation of a set of rules supporting this investment analysis process.


Trading system Semantic technologies Fundamental analysis Reasoning 



This work is supported by the Spanish Ministry of Science and Innovation under the project TRAZAMED (IPT-090000-2010-007).


  1. Abarbanell, J. S., & Bushee, B. J. (1997). Fundamental analysis, future earnings, and stock prices. Journal of Accounting Research, 35(1), 1–24.CrossRefGoogle Scholar
  2. Anastasakis, L., & Mort, N. (2009). Exchange rate forecasting using a combined parametric and nonparametric self-organising modelling approach. Expert Systems with Applications, 36(10), 12001–12011.CrossRefGoogle Scholar
  3. Broekstra, K., Kampman, A., Van Harmelen, F. (2002). Sesame: A generic architecture for storing and querying RDF and RDF schema. The Semantic Web—ISWC 2002. 2342, 54–68Google Scholar
  4. Castells, P., Foncillas, B., Lara, R., Rico, M., & Alonso, J. L. (2004). Semantic web technologies for economic and financial information management. The Semantic Web: Research and Applications, 3053, 473–487.CrossRefGoogle Scholar
  5. Chavarnakul, T., & Enke, D. (2008). Intelligent technical analysis based equivolume charting for stock trading using neural networks. Expert Systems with Applications, 34(2), 1004–1017.CrossRefGoogle Scholar
  6. Chen, J. S., & Liao, B. P. (2007). Piecewise nonlinear goal-directed CPPI strategy. Expert Systems with Applications, 33(4), 857–869.CrossRefGoogle Scholar
  7. Chen, Y., Mabu, S., Shimada, S., & Hirasawa, K. (2009). A genetic network programming with learning approach for enhanced stock trading model. Expert Systems with Applications, 36(10), 12537–12546.CrossRefGoogle Scholar
  8. Fernandez Garcia, M. E., De la Cal Marin, E. A., & Quiroga Garcia, R. (2010). Improving return using risk-return adjustment and incremental training in technical trading rules with GAPs. Applied Intelligence, 33(2), 93–106.CrossRefGoogle Scholar
  9. Fernandez, P., & Yzaguirre, J. (1995). IBEX 35: Análisis e investigaciones. In: (Eds.), Barcelona: Ediciones Internacionales Universitarias Google Scholar
  10. Fox, M. S., Barbuceanu, M., Gruninger, M., & Lin, J. (1998). An organizational ontology for enterprise modeling. Simulating organizations: Computational models of institutions and groups (pp. 131–152). Cambridge: MIT Press.Google Scholar
  11. Gomez, J. M., García-Sanchez, F., Valencia-Garcia, R., Toma, I., Garcia-Moreno, C. (2009). SONAR: A semantically empowered financial search engine. International work-conference on the interplay between natural and artificial computation Google Scholar
  12. Haarslev, V., & Möller, R. (2003). Racer: An OWL reasoning agent for the semantic web. Proceedings of the International Workshop on Applications, Products and Services of Web-based Support Systems Google Scholar
  13. Horrocks, I., Patel-Schneider, P. F., Boley H., et al. (2004). SWRL: A semantic web rule language combining OWL and RuleML. W3C Member Submission Google Scholar
  14. Jang, M., & Sohn, J. C. (2004). Bossam: An extended rule engine for OWL Inferencing. Rules and Rule Markup Languages for the Semantic Web, 3323, 128–138.CrossRefGoogle Scholar
  15. Kim, K. J. (2004). Toward global optimization of case-based reasoning systems for financial forecasting. Applied Intelligence, 21, 239–249.CrossRefGoogle Scholar
  16. Kovalerchuk, B., & Vityaev, E. (2000). Data mining in finance: Advances in relational and hybrid methods. Kluwer AcademicGoogle Scholar
  17. Lee, S. J., Ahn, J. J., Oh, K. J., & Kim, T. Y. (2010). Using rough set to support investment strategies of real-time trading in futures market. Applied Intelligence, 32(3), 364–377.CrossRefGoogle Scholar
  18. Lo, A., Mamaysky, H., & Wang, J. (2000). Foundations of technical analysis: Computational algorithm, statistical inference, and empirical implementation. Journal of Finance, 55(4), 1705–1765.CrossRefGoogle Scholar
  19. Losada, A. S., Bas, J. L., Bellido, S., Contreras, J., Benjamins, R., Gomez, J. M. (2005). Data, information and process integration with semantic web services Google Scholar
  20. Majhi, R., Panda, G., Majhib, B., & Sahoo, G. (2009). Efficient prediction of stock market indices using adaptive bacterial foraging optimization (ABFO) and BFO based techniques. Expert Systems with Applications, 36(6), 10097–10104.CrossRefGoogle Scholar
  21. Majhi, R., Panda, G., & Sahoo, G. (2009). Development and performance evaluation of FLANN based model for forecasting of stock markets. Expert Systems with Applications, 36(3), 6800–6808.CrossRefGoogle Scholar
  22. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77–91.Google Scholar
  23. Markowitz, H. (1999). The early history of portfolio theory. Financial Analysts Journal, 55(4), 1600–1960.CrossRefGoogle Scholar
  24. McGuinness, D. L., & Harmelen, F. V. (2004). OWL web ontology language overview. W3C Recommendation Google Scholar
  25. Mochón, A., Quintana, D., Sáez, Y., & Isasi, P. (2008). Soft computing techniques applied to finance. Applied Intelligence, 29(2), 111–115.CrossRefGoogle Scholar
  26. Modigliani, F., & Modigliani, L. (1997). Risk-adjusted performance. Journal of Portfolio Management, 23, 45–54.CrossRefGoogle Scholar
  27. Mossin, J. (1966). Equilibrium in a capital asset market. Econometrica, 34(4), 768–783.CrossRefGoogle Scholar
  28. Motik, B., & Studer, R. (2005). KAON2—a scalable reasoning tool for the semantic web. European Semantic Web Conference Google Scholar
  29. Mullins, D. W. (1982). Does the capital asset pricing model work? Harvard Business Review, 105–113Google Scholar
  30. Partridge, C., & Stefanova, M. (2001). A synthesis of state of the art enterprise ontologies. Lessons Learned. The BORO Program, LADSEB CNR Google Scholar
  31. Qian, B., & Rasheed, K. (2006). Stock market prediction with multiple classifiers. Applied Intelligence, 26, 25–33.CrossRefGoogle Scholar
  32. Quah, T. S. (2009). DJIA stock selection assisted by neural network. Expert Systems with Applications, 35(1/2), 50–58.Google Scholar
  33. Rodríguez-González, A., García-Crespo, Á., Colomo-Palacios, R., Guildrís-Iglesias, F., & Gómez-Berbís, J. M. (2011). CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert Systems with Applications, 38(9), 11489–11500.CrossRefGoogle Scholar
  34. Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.CrossRefGoogle Scholar
  35. Schumaker, R. P., & Chen, S. (2009). Textual analysis of stock market prediction using breaking financial news. ACM Transactions on Information Systems, 27(2)Google Scholar
  36. Sharpe, W. F. (1966). Mutual fund performance. Journal of Business, 39(1), 119–138.CrossRefGoogle Scholar
  37. Shearer, R., Motik, B., Horrocks, I. (2008). HermiT: A highly-efficient OWL reasoner. In: A. Ruttenberg, U. Sattler, C. Dolbear (Ed.), Proc. of the 5th Int. Workshop on OWL: Experiences and Directions (OWLED 2008 EU) Google Scholar
  38. Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51–53.CrossRefGoogle Scholar
  39. Sitte, R., & Sitte, J. (2002). Neural networks approach to the random walk dilemma of financial time series. Applied Intelligence, 16(3), 163–171.CrossRefGoogle Scholar
  40. Standfield, K. (2005). Intangible finance standards: Advances in fundamental analysis & technical analysis. Elsevier Academic PressGoogle Scholar
  41. Vanstone, B., & Finnie, G. (2009). An empirical methodology for developing stockmarket trading systems using artificial neural networks. Expert Systems with Applications, 36(3), 6668–6680.CrossRefGoogle Scholar
  42. Vanstone, B., & Tan, C. N. W. (2005). Artificial neural networks in financial trading. In: M. Khosrow-Pour (Ed.), Encyclopedia of information science and technology. Idea Group Google Scholar
  43. Wang, Y. F. (2003). Mining stock prices using fuzzy rough set system. Expert Systems with Applications, 24(1), 13–23.CrossRefGoogle Scholar
  44. Wen, Q., Yang, Z., Song, Y., & Jia, P. (2010). Automatic stock decision support system based on box theory and SVM algorithm. Expert Systems with Applications, 37(2), 1015–1022.CrossRefGoogle Scholar
  45. XBRL International. (2009). XBRL: eXtensible business reporting language. Retrieved June 19, 2009, from XBRL International Web site:
  46. Yoda, M. (1994). Predicting the Tokyo stock market. In: G. J. Deboeck (Ed.), Trading on the edge (pp. 66–79). Wiley (1994)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alejandro Rodríguez-González
    • 1
    Email author
  • Ricardo Colomo-Palacios
    • 1
  • Fernando Guldris-Iglesias
    • 1
  • Juan Miguel Gómez-Berbís
    • 1
  • Angel García-Crespo
    • 1
  1. 1.Computer Science DepartmentUniversidad Carlos III de MadridMadridSpain

Personalised recommendations