Information Systems Frontiers

, Volume 14, Issue 3, pp 571–584 | Cite as

Modeling the influence of network delay on the user experience in distributed home-automation networks



Today’s modern home-automation systems and services (HASS) frequently communicate over public telecommunications networks, such as the Internet. Unfortunately, these communication networks do not usually provide sufficient quality (i.e., a predictable delay), which is generally assured in fieldbus HASS networks. Consequently, the user-perceived quality of experience (QoE) cannot be maintained at a satisfactory level when using different HASS devices communicating over an IP-based network. The data transferred over the Internet can experience a non-negligible delay that can have a considerable influence on the QoE. For this reason, the main goal of our research was to measure the influence of the network delay on a subjective QoE assessment, while interacting with some frequently used HASS tasks. The results show that users are satisfied if the delay is kept below 0.8 s, and that they can tolerate delays of over 2 s (depending on the level of the HASS task interactivity). Since such a user-perceived subjective QoE assessment is both time-consuming and expensive we also propose objective QoE assessment models to represent the influence of network delay on a subjective QoE assessment for various HASS tasks.


Quality of experience Home-automation system and services Network delay Subjective QoE assessment Objective QoE assessment model 


  1. Anderson, J. (2001). Methods for measuring perceptual speech quality—White paper. Retrieved from
  2. BACnet. (n.d.). Retrieved from
  3. Bhatti, N., Bouch, A., & Kuchinsky, A. (2000). Integrating user-perceived quality into Web server design. Computer Networks Journal, 33(1–6), 1–16. doi: 10.1016/S1389-1286(00)00087-6.CrossRefGoogle Scholar
  4. Bouch, A., Kuchinsky, A., & Bhatti, N. (2000a). Quality is in the eye of the beholder: Meeting users’ requirements for internet quality of service. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Hague, Netherlands.Google Scholar
  5. Bouch, A., Sasse, M. A., & DeMeer, H. (2000b). Of packets and people: A user-centered approach to quality of service. Proceedings of Eight International Workshop of Quality of Service, Pittsburg, USA.Google Scholar
  6. Cavalieri, S., & Cutuili, G. (2008). Proposal and evalution of deterministic access in KNX standard. IEEE International Symposium on Industrial Electronics, Cambridge, England.Google Scholar
  7. Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., & Shneiderman, B. (2004). Determining causes and severity of end-user frustration. International Journal of Human–Computer Interaction, 17(3), 333–356. doi: 10.1207/s15327590ijhc1703_3.CrossRefGoogle Scholar
  8. Chen, Z., Shao, G., Lou, R., Liang, B., Yu, H., & Ni, J. (2007). Analysis of control network timing characteristics. IEEE International Conference on Computer as a Tool, Warsaw, Poland.Google Scholar
  9. Clark, A. (2001). Modeling the effects of burst packet loss and recency on subjective voice quality. IP Telephony Workshop. Retrieved from
  10. Dabholkar, P. A., & Sheng, X. (2008). Perceptions of download delays: relation to actual waits, web site abandoning, and stage of delay. The Service Industries Journal, 28(10), 1415–1429. doi: 10.1080/02642060802120166.CrossRefGoogle Scholar
  11. De Rango, F., Tropea, M., Fazio, P., & Marano, S. (2006). Overview on VoIP: subjective and objective measurement methods. International Journal of Computer Science and Network Security, 6(1), 140–153.Google Scholar
  12. De Santis, A., & Iacoviello, D. (2009). Robust real time eye tracking for computer interface for disabled people. Computer Methods and Programs in Biomedicine, 96(1), 1–11. doi: 10.1016/j.cmpb.2009.03.010.CrossRefGoogle Scholar
  13. Dennis, A. R., & Taylor, N. J. (2006). Information foraging on the web: the effects of acceptable Internet delays on multi-page information search behavior. Decision Support Systems, 42(2), 810–824. doi: 10.1016/j.dss.2005.05.032.CrossRefGoogle Scholar
  14. Empirix (2001). Assuring QoE on next generation networks. Retrieved from
  15. Godana, B. E., Kooij, B. E., Ahmed, O. K. (2009). Impact of advertisements during channel zapping on quality of experience. IEEE Fifth International Conference on Networking and Services, Valencia, Spain.Google Scholar
  16. Humar, I. (2006). Telecommunications traffic modeling and methods ensuring quality of services for interactive applications, such as remote desktop and e-learning. PhD thesis, University of Ljubljana, Slovenia.Google Scholar
  17. Humar, I., Lamovšek, P., Bogataj, U., Meglič, B., & Bešter, J. (2007). Extention of the E-model for objective assessment of the jitter impact on the perceived voice quality in packet networks. Electrotechnical Review, 74(3), 159–165.Google Scholar
  18. ITU-R Rec. BS.1387 (2001). Method for objective measurements of perceived audio quality. Retrieved from
  19. ITU-R Rec. BT.500-11 (2002). Methodology for the subjective assessment of the quality of television pictures. Retrieved from
  20. ITU-T Rec. G.107 (2003). The E-model, a computational model for use in transmission planning. Retrieved from
  21. ITU-T Rec. G.1070 (2007). Opinion model for video-telephony applications. Retrieved from
  22. ITU-T Rec. J.144 (2004). Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference. Retrieved from
  23. ITU-T Rec. J.148 (2003). Requirements for an objective perceptual multimedia quality model. Retrieved from
  24. ITU-T Rec. P.564 (2006). Conformance testing for narrowband voice over IP transmission quality assessment models. Retrieved from
  25. ITU-T Rec. P.800 (1996). Methods for subjective determination of transmission quality. Retrieved from
  26. ITU-T Rec. P.862 (2001). Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrowband telephone networks and speech codecs. Retrieved from
  27. Jacko, J., Sears, A., & Borella, M. (2000). The effect of network delay and media on user perceptions of web resources. Behaviour and Information Technology, 19(6), 427–439. doi: 10.1080/014492900750052688.CrossRefGoogle Scholar
  28. Kang, J. S. (2001). A study of subjective quality measurement over VoIP network. Proceedings of IEEE International Conference on Info-Tech and Info-Net, 5, 311–316, Beijing, China.Google Scholar
  29. Kastner, W., Neugschwandtner, G., Soucek, S., & Newmann, H. M. (2005). Communication systems for building automation and control. Proceedings of the IEEE, 93(6), 1178–1203. Vienna, Austria.CrossRefGoogle Scholar
  30. Khirmam, S., & Henriksen, P. (2002). Relationship between quality of service and quality of experience for public internet service. In the third workshop on passive and active measurement, Fort Collens, Colorado, USA.Google Scholar
  31. Kitawaki, N., Arayama, Y., & Yamada, T. (2005). Multimedia opinion model based on media interaction of audio-visual communications. Proceedings of the fourth International Conference on Measurement of speech and Measurement of Speech and Audio Quality in Networks, 5–10, Prague, Czech Republic.Google Scholar
  32. Konnex (n.d.). Retrieved from
  33. Kooij, R., Ahmed, K., & Brunnström, K. (2006). Perceived quality of channel zapping. The fifth International Conference Communication Systems and Networks, 155–158, Palma De Mallorca, Spain.Google Scholar
  34. Krishnamurthy, B., & Wills, C. (2000). Analyzing factors that influence end-to-end web performance. Computer Networks Journal, 33(1–6), 17–32. doi: 10.1016/S1389-1286(00)00067-0.CrossRefGoogle Scholar
  35. LonWorks (n.d.). Retrieved from
  36. Malfait, L., Berger, J., & Kastner, M. (2006). P.563 - The ITU-T Standard for single-ended speech quality assessment. IEEE Transaction on Audio, Speech and Language Processing, 14(6), 1924–1934. doi: 10.1109/TASL.2006.883177.CrossRefGoogle Scholar
  37. Masuda, M., & Hayashi, T. (2006). Non-intrusive quality monitoring method of VoIP speech based on network performance metrics. IEICE Transaction on Communications, E89B(2), 304–312. doi: 10.1093/ietcom/e89-b.2.304.CrossRefGoogle Scholar
  38. Meddahi, A., & Afifi, H. (2006). “Packet-E-Model”: E-Model for VoIP quality evaluation. Computer Networks, 50(15), 2659–2675. doi: 10.1016/j.comnet.2005.10.008.CrossRefGoogle Scholar
  39. Merz, H., Hansemann, T., & Hubner, C. (2009). Building automation and communication systems with Konnex, LON and BACnet. Heidelberg: Springer.Google Scholar
  40. Miškowiez, M. (2003). Analysis of the LonTalk/EIA-709.1 channel performance under soft real-time requirements. IEEE International Conference on Industrial Technology, 2, 705–708. Maribor, Slovenia.Google Scholar
  41. Muntean, C. H. (2008). Improving learner quality of experience by content adaptation based on network conditions. Computers in Human Behavior, 4(24), 1452–1472. doi: 10.1016/j.chb.2007.07.016.CrossRefGoogle Scholar
  42. Nielsen, J. (2000). Designing web usability: The practice of simplicity. Indianapolis: New Riders Publishing.Google Scholar
  43. Ninagawa, C., Sato, T., & Kawakita, Y. (2008). Communication performance simulation for object access of BACnet WebService building facility monitoring system. IEEE International Conference on Emerging Technologies and Factory Automation, 701–704, Hamburg, Germany.Google Scholar
  44. Profibus (n.d.). Retrieved from
  45. Ramsay, J., Barbesi, A., & Preece, J. (1998). A psychological investigation of long retrieval times on the world wide web. Interacting with Computers, 10(1), 77–86. doi: 10.1016/S0953-5438(97)00019-2.CrossRefGoogle Scholar
  46. Rix, A. W., Beerends, J. G., & Kim, D. S. (2006). Objective assessment of speech and audio quality—technology and applications. IEEE Transaction on audio, speech and language processing, 14(6), 1890–1901. doi: 10.1109/TASL.2006.883260.CrossRefGoogle Scholar
  47. Sedlar, U., Zebec, L., Bešter, J., & Kos, A. (2008). Bringing click-to-dial functionality to IPTV users. IEEE Communication Magazine, 46(3), 118–126. doi: 10.1109/MCOM.2008.4463782.CrossRefGoogle Scholar
  48. Selvidge, P. (2003). Examining tolerance for online delays. Usability News, 1(5). Retrieved from
  49. Selvidge, P. R., Chaparrob, B. S., & Bender, G. T. (2002). The world wide wait: effects of delays on user performance. International Journal of Industrial Ergonomics, 29(1), 15–20. doi: 10.1016/S0169-8141(01)00045-2.CrossRefGoogle Scholar
  50. Servidge, P. (1999). How long is too long to wait for a web site to load?. Usability News, 1(2). Retrieved from
  51. Sevcik, P. J. (2002). Understanding how users view application performance. Business Communications Review, 7(32), 8–10.Google Scholar
  52. Shubin, H., & Meehan, M. (1997). Navigation in web applications. ACM Interactions, 4(6), 13–17. doi: 10.1145/267505.267508.CrossRefGoogle Scholar
  53. Skorin-Kapov, L., & Matijasevic, M. (2006). End-to-end QoS signaling for future multimedia services in the NGN. Lecture Notes in Computer Science, 4003, 4008–4419. doi: 10.1007/11759355_37.CrossRefGoogle Scholar
  54. Song, W. S., Hong, S. H., & Park, T. J. (2007). The effects of service delays on a BACnet-based HVAC control system. Control Engineering Practice, 15(2), 209–217. doi: 10.1016/j.conengprac.2006.06.003.CrossRefGoogle Scholar
  55. Soucek, S., & Sauter, T. (2004). Quality of service concerns in IP-Based control systems. IEEE Transaction on Industrial Informatics, 51(6), 1249–1258. doi: 10.1109/TIE.2004.837860.CrossRefGoogle Scholar
  56. Takahashi, A., Yoshino, H., & Kitawaki, N. (2004). Perceptual QoS assessment technologies for VoIP. IEEE Communication Magazine, 42(7), 28–34. doi: 10.1109/MCOM.2004.1316526.CrossRefGoogle Scholar
  57. Takahashi, A., Kurashima, A., & Yoshino, H. (2006). Objective assessment methodology for estimating conversational quality in VoIP. IEEE Transactions on Audio, Speech and Language Processing, 14(6), 1984–1993. doi: 10.1109/TASL.2006.883261.CrossRefGoogle Scholar
  58. Takahashi, A., Hands, D., & Barriac, V. (2008). Standardization activities in the ITU for a QoE assessment of IPTV. IEEE Communications Magazine, 46(2), 78–84. doi: 10.1109/MCOM.2008.4473087.CrossRefGoogle Scholar
  59. Umberger, M., Humar, I., Kos, A., Guna, J., Žemva, A., & Bešter, J. (2009). The integration of home-automation and IPTV system and services. Computer Standards and Interfaces, 31(4), 675–684. doi: 10.1016/j.csi.2008.09.012.CrossRefGoogle Scholar
  60. Verscheurei, O., & Garcia, X. (1998). User-oriented QoS in packet video delivery. IEEE Network, 12(6), 12–21. doi: 10.1109/65.752641.CrossRefGoogle Scholar
  61. Volk, M., Guna, J., Kos, A., & Bešter, J. (2008). Quality-assured provisioning of IPTV services within the NGN environment. IEEE Communication magazine, 46(5), 118–126. doi: 10.1109/MCOM.2008.4511660.CrossRefGoogle Scholar
  62. Welsh, J., & Clark, J. (2006). A proposed media delivery index RFC 4445. Retrieved from
  63. Wolberg, J. (2005). Data analysis using the method of least squares: extracting the most information from experiments. Berlin: Springer.Google Scholar
  64. Xiao, Y., Du, X., Zhang, J., Hu, F., & Guizani, S. (2007). Internet protocol television (IPTV): the killer application for the next-generation internet. IEEE Communication Magazine, 45(11), 126–134. doi: 10.1109/MCOM.2007.4378332.CrossRefGoogle Scholar
  65. Yamagishi, K., & Hayashi, T. (2006a). Opinion model using psychological factors for interactive multimodal services. IEICE Transaction on Communications, E89B(2), 281–288. doi: 10.1093/ietcom/e89-b.2.281.CrossRefGoogle Scholar
  66. Yamagishi, K., & Hayashi, T. (2006b). Opinion model for estimating video quality of videophone services. IEEE Global Telecommunication Conference GLOBECOM, 1–5, San Francisco, USA.Google Scholar
  67. Yamagishi, K., & Hayashi, T. (2006c). Verification of video quality opinion model for videophone services. Second ISCA/DEGA Tutorial and Research Workshop on Perceptual Quality of Systems, 143–148, Berlin, Germany.Google Scholar
  68. Yamagishi, K., & Hayashi, T. (2008). Parametric packet-layer model for monitoring video quality of IPTV Services. IEEE International Conference on Communications, 110–114. doi: 10.1109/ICC.2008.29.
  69. Zhang W., & He, J. (2007). Statistical modeling and correlation analysis of end-to-end delay in wide area networks. Proceedings of IEEE International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 3, 968–973, Qingdao, China.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.GOAP d.o.o.SolkanSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Jozef Stefan Institute, Department of Systems and ControlLjubljanaSlovenia

Personalised recommendations