Skip to main content

Advertisement

Log in

Ocular blood flow and choroidal thickness in ocular hypertension

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Ocular hypertension (OHT) is a clinical entity characterized by elevated intraocular pressure (IOP) without optic nerve damage. In the presence of other risk factors, OHT may progress to glaucoma. This study aimed to evaluate ocular blood flow (OBF) and choroidal thickness (CT), which may be markers and/or risk factors that could assess the progression of OHT to glaucoma.

Material and methods

Age and gender matched 60 eyes of 32 patients with OHT and 61 eyes of 31 control patients were included for this study. All participants underwent a detailed ophthalmological examination including best-corrected visual acuity, IOP measurement with Goldmann applanation tonometry, gonioscopy, optic nerve evaluation with 78 D lens, and visual field test with Humphrey visual field analyzer. Retinal nerve fiber layer, ganglion cell complex, and central corneal thickness measurements were performed by optical coherence tomography (OCT). CT was measured with OCT in the fovea, 1.5 mm, 2 mm, 2.5 mm nasal and temporal to the fovea and from nasal and temporal to the optic disk. OBF data including peak systolic velocity (PSV), end-diastolic velocity (EDV), resistivity index (RI) and pulsatility index (PI) were measured with color Doppler imaging (CDI) from the ophthalmic artery (OA), central retinal artery (CRA), medial and lateral branches of short posterior ciliary arteries (MPCA, LPCA). Systolic (SBP) and diastolic arterial blood pressure were also noted.

Results

CT measurement at each point in the OHT group compared to the control group were found to be significantly thinner (p = 0.001). There was a decrement in CT from the fovea to the nasal and temporal retina in both groups. In the OHT group, there was a significant decrease in PSV and EDV of OA, CRA, MPCA, and LPCA, and a significant increase in PI and RI of measured arteries. (EDV p = 0.036, PI p = 0.006, RI p = 0.006 for OA and p = 0.001 for other arteries and all OBF measurements). There was a negative correlation between CT and age, IOP and axial length (AL) in OHT group (r = − 0.529, p = 0.001; r = − 0.258, p = 0.047; r = − 0.345, p = 0.007, respectively, for fovea). But there was no statistically significant correlation between CT and other measurements in the control group, except age (r = − 0.860 p = 0.001 for fovea).

Conclusion

We found that OBF decrement and choroidal thinning in OHT group compared with controls. Interpretation both of CT measurements with OCT and OBF parameters with CDI and new imaging technologies may help to prevent and reduce the possible optic nerve damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Can be made available if demanded.

References

  1. Shields MB (ed) (2011) Textbook of glaucoma. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  2. Shin JW, Sung KR, Song MK (2020) Ganglion cell-inner plexiform layer and retinal nerve fiber layer changes in glaucoma suspects. Am J Ophthalmol 210:26–34

    Article  PubMed  Google Scholar 

  3. Heijl A, Leske MC, Bengtsson B et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279

    Article  PubMed  Google Scholar 

  4. Klein BE, Klein R, Sponsel WE et al (1992) Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology 99(10):1499–1504

    Article  CAS  PubMed  Google Scholar 

  5. Bonomi L, Marchini G, Marraffa M et al (1998) Prevalence of glaucoma and intraocular pressure distribution in a defined population: the Egna-Neumarkt study. Ophthalmology 105:209–215

    Article  CAS  PubMed  Google Scholar 

  6. Fuchsjager-Mayrl G, Wally B, Georgopoulos M et al (2004) Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 45:834–839

    Article  PubMed  Google Scholar 

  7. Galassi F, Sodi A, Ucci F et al (2003) Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol 121:1711–1715

    Article  PubMed  Google Scholar 

  8. Satilmis M, Orgul S, Doubler B et al (2003) Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 135:664–669

    Article  PubMed  Google Scholar 

  9. Pinto LA, Willekens K, Van Keer K et al (2016) Ocular blood flow in glaucoma—the Leuven Eye Study. Acta Ophthalmol 94:592–598

    Article  Google Scholar 

  10. Marangoni D, Falsini B, Colotto A et al (2012) Subfoveal choroidal blood flow and central retinal function in early glaucoma. Acta Ophthalmol 90:288–294

    Article  Google Scholar 

  11. Pemp B, Georgopoulos M, Vass C et al (2009) Diurnal fluctuation of ocular blood flow parameters in patients with primary open-angle glaucoma and healthy subjects. Br J Ophthalmol 93:486–491

    Article  CAS  PubMed  Google Scholar 

  12. Tasman W (ed) (2013) Duane’s ophthalmology. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  13. Tobe LA, Harris A, Hussain RM et al (2015) The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol 99(5):609–612

    Article  PubMed  Google Scholar 

  14. Butt Z, O’Brien C, McKillop G et al (1997) Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci 38(3):690–696

    CAS  PubMed  Google Scholar 

  15. Findl O, Rainer G, Dallinger S et al (2000) Assessment of optic disk blood flow in patients with open-angle glaucoma. Am J Ophthalmol 130(5):589–596

    Article  CAS  PubMed  Google Scholar 

  16. Fan N, Wang P, Tang L (2015) Ocular blood flow and normal tension glaucoma. BioMed Res Int 2015:308505

    Article  PubMed  PubMed Central  Google Scholar 

  17. Galassi F, Giambene B, Varriale R (2011) Systemic vascular dysregulation and retrobulbar hemodynamics in normal-tension glaucoma. Invest Ophthalmol Vis Sci 52:4467–4471

    Article  PubMed  Google Scholar 

  18. Drance S, Anderson DR, Schulzer M (2001) Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131(6):699–708

    Article  CAS  PubMed  Google Scholar 

  19. Nicolela MT, Drance SM, Rankin SJ et al (1996) Color Doppler imaging in patients with asymmetric glaucoma and unilateral visual field loss. Am J Ophthalmol 121(5):502–510

    Article  CAS  PubMed  Google Scholar 

  20. Zeitz O, Galambos P, Wagenfeld L et al (2006) Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br J Ophthalmol 90(10):1245–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu S, Huang S, Lin Z et al (2015) Color Doppler imaging analysis of ocular blood flow velocities in normal tension glaucoma patients: a meta-analysis. J Ophthalmol 2015:919610

    Article  PubMed  PubMed Central  Google Scholar 

  22. Akarsu C, Bilgili MY (2004) Color Doppler imaging in ocular hypertension and open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 242(2):125–129

    Article  PubMed  Google Scholar 

  23. Nakazawa T (2016) Ocular blood flow and ınfluencing factors for glaucoma. Asia Pac J Ophthalmol (Phila) 5(1):38–44

    Article  CAS  Google Scholar 

  24. Orgul S, Cioffi GA, Wilson DJ et al (1996) An endothelin-1 induced model of optic nerve ischemia in the rabbit. Invest Ophthalmol Vis Sci 37(9):1860–1869

    CAS  PubMed  Google Scholar 

  25. Kawasaki R, Wang JJ, Rochtchina E et al (2013) Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology 120:84–90

    Article  PubMed  Google Scholar 

  26. Meng N, Zhang P, Huang H et al (2013) Color Doppler imaging analysis of retrobulbar blood flow velocities in primary open-angle glaucomatous eyes: a meta-analysis. PLoS ONE 8(5):e62723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stalmans I, Siesky B, Zeyen T et al (2009) Reproducibility of Color Doppler imaging. Graefes Arch Clin Exp Ophthalmol 247(11):1531–1538

    Article  PubMed  Google Scholar 

  28. Mayama C, Araie M (2013) Effects of antiglaucoma drugs on blood flow of optic nerve heads and related structures. Jpn J Ophthalmol 57:133–149

    Article  CAS  PubMed  Google Scholar 

  29. Harris A, Jonescu-Cuypers CP (2001) The impact of glaucoma medication on parameters of ocular perfusion. Curr Opin Ophthalmol 12(2):131–137

    Article  CAS  PubMed  Google Scholar 

  30. Okutucu M, Fındık H, Arslan MG (2019) Direct and crossover effects of brinzolamide, betaxolol, and latanoprost on choroidal thickness. Cutan Ocul Toxicol 38(2):196–200

    Article  CAS  PubMed  Google Scholar 

  31. Wu SY, Nemesure B, Hennis A et al. Barbados Eye Studies Group (2006) Nine-year changes in intraocular pressure: the Barbados eye studies. Arch Ophthalmol 124(11):1631–1636

  32. Bonomi L, Marchini G, Marraffa M et al (2000) Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 107(7):1287–1293

    Article  CAS  PubMed  Google Scholar 

  33. Mitchell P, Lee AJ, Rochtchina E et al (2004) Open-angle glaucoma and systemic hypertension: the Blue Mountains Eye Study. J Glaucoma Aug;13(4):319–326.

    Article  PubMed  Google Scholar 

  34. Chung HJ, Hwang HB, Lee NY (2015) The association between primary open-angle glaucoma and blood pressure: two aspects of hypertension and hypotension. Biomed Res Int 2015:827516

    Article  PubMed  PubMed Central  Google Scholar 

  35. Leske MC, Wu SY, Hennis A et al (2008) Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 115(1):85–93

    Article  PubMed  Google Scholar 

  36. Leske MC (2009) Ocular perfusion pressure and glaucoma: clinical trial and epidemiologic findings. Curr Opin Ophthalmol 20(2):73–78

    Article  PubMed  PubMed Central  Google Scholar 

  37. Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 147(5):811–815

    Article  PubMed  Google Scholar 

  38. Ikuno Y, Kawaguchi K, Nouchi T et al (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51(4):2173–2176

    Article  PubMed  Google Scholar 

  39. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146(4):496–500

    Article  PubMed  Google Scholar 

  40. Zhang Z, Yu M, Wang F et al (2016) Choroidal thickness and open-angle glaucoma: a meta-analysis and systematic review. J Glaucoma 25:446–454

    Article  Google Scholar 

  41. Pablo LE, Bambo MP, Cameo B et al (2018) The use of zonal analysis of peripapillary choroidal thickness in primary open-angle glaucoma. Jpn J Ophthalmol 62(1):41–47

    Article  PubMed  Google Scholar 

  42. Lin Z, Huang S, Huang P et al (2018) Analysis of choroidal thickness in ocular hypertensive patients using enhanced depth imaging optical coherence tomography. Lasers Med Sci 33(1):111–121

    Article  PubMed  Google Scholar 

Download references

Funding

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the design of the study, the interpretation of data, the draft, gave their final approval to the manuscript, and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Serdar Bayraktar.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest.

Ethics approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

A written consent was obtained from each subject.

Consent for publication

Not applicable. This manuscript does not contain personal and/or medical information about an identifiable living individual.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, S., İpek, A., Takmaz, T. et al. Ocular blood flow and choroidal thickness in ocular hypertension. Int Ophthalmol 42, 1357–1368 (2022). https://doi.org/10.1007/s10792-021-02123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-02123-2

Keywords

Navigation