Skip to main content

Advertisement

Log in

Gene therapy in color vision deficiency: a review

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Color vision deficiencies are a group of vision disorders, characterized by abnormal color discrimination. They include red-green color blindness, yellow-blue color blindness and achromatopsia, among others. The deficiencies are caused by mutations in the genes coding for various components of retinal cones. Gene therapy is rising as a promising therapeutic modality. The purpose of this review article is to explore the available literature on gene therapy in the different forms of color vision deficiencies.

Methods

A thorough literature review was performed on PubMed using the keywords: color vision deficiencies, gene therapy, achromatopsia and the various genes responsible for this condition (OPN1LW, OPN1MW, ATF6, CNGA3, CNGB3, GNAT2, PDE6H, and PDE6C).

Results

Various adenovirus vectors have been deployed to test the efficacy of gene therapy for achromatopsia in animals and humans. Gene therapy trials in humans and animals targeting mutations in CNGA3 have been performed, demonstrating an improvement in electroretinogram (ERG)-investigated cone cell functionality. Similar outcomes have been reported for experimental studies on other genes (CNGB3, GNAT2, M- and L-opsin). It has also been reported that delivering the genes via intravitreal rather than subretinal injections could be safer. There are currently 3 ongoing human clinical trials for the treatment of achromatopsia due to mutations in CNGB3 and CNGA3.

Conclusion

Experimental studies and clinical trials generally showed improvement in ERG-investigated cone cell functionality and visually elicited behavior. Gene therapy is a promising novel therapeutic modality in color vision deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code availability

N/A.

Data availability

N/A.

References

  1. Tekavčič Pompe M (2020) Color vision testing in children. Color Res Appl 45(5):775–781

    Article  Google Scholar 

  2. Martínez-Domingo M, Gómez-Robledo L, Valero E, Huertas R et al (2019) Assessment of VINO filters for correcting red-green color vision deficiency. Opt Expr 7(13):17954

    Article  Google Scholar 

  3. Remmer M, Rastogi N, Ranka M et al (2015) Achromatopsia. Curr Opin Ophthalmol 26(5):333–340

    Article  Google Scholar 

  4. Pascual-Camps I, Barranco-Gonzalez H, Aviñó-Martínez J et al (2017) Diagnosis and treatment options for achromatopsia: a review of the literature. J Pediatr Ophthalmol Strabismus 55(2):85–92

    Article  Google Scholar 

  5. Michaelides M, Hunt DM, Moore AT (2004) The cone dysfunction syndromes. Br J Ophthalmol 88:291–297

    Article  CAS  Google Scholar 

  6. Moskowitz A, Hansen R, Akula J et al (2009) Rod and rod-driven function in achromatopsia and blue cone monochromatism. Invest Ophthalmol Vis Sci 50(2):950

    Article  Google Scholar 

  7. Thomas MG, Mclean RJ, Kohl S et al (2012) Early signs of longitudinal progressive cone photoreceptor degeneration in achromatopsia. Br J Ophthalmol 96(9):1232–1236. https://doi.org/10.1136/bjophthalmol-2012-301737

    Article  PubMed  Google Scholar 

  8. Kohl S, Jägle H, Wissinger B. Achromatopsia. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews. Seattle, WA: University of Washington, Seattle; 1993–2017. https://www.ncbi.nlm.nih.gov/books/NBK1418/. Accessed Mar 23, 2017

  9. Ansar M, Santos-Cortez RL, Saqib MA et al (2015) Mutation of ATF6 causes autosomal recessive achromatopsia. Hum Genet 134:941–950

    Article  CAS  Google Scholar 

  10. Kohl S, Zobor D, Chiang WC et al (2015) Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat Genet 47:757–765

    Article  CAS  Google Scholar 

  11. Zelinger L, Cideciyan AV, Kohl S et al (2015) Genetics and disease expression in the CNGA3 form of achromatopsia: steps to the path to gene therapy. Ophthalmology 122:997–1007

    Article  Google Scholar 

  12. Li S, Huang L, Xiao X et al (2014) Identification of CNGA3 mutations in 46 families: common cause of achromatopsia and cone-rod dystrophies in Chinese patients. JAMA Ophthalmol 132:1076–1083

    Article  Google Scholar 

  13. Ding XQ, Harry CS, Umino Y et al (2009) Impaired cone function and cone degeneration resulting from CNGB3 deficiency: down-regulation of CNGA3 biosynthesis as a potential mechanism. Hum Mol Genet 18:4770–4780

    Article  CAS  Google Scholar 

  14. Kohl S, Marx T, Giddings I et al (1998) Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat Genet 19(257):259

    Google Scholar 

  15. Thiadens AA, den Hollander AI, Roosing S et al (2009) Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 85:240–247

    Article  CAS  Google Scholar 

  16. Wu DM, Fawzi AA (2013) Abnormalities of cone and rod function. Retina. https://doi.org/10.1016/b978-1-4557-0737-9.00044-8

    Article  PubMed  Google Scholar 

  17. Toffoli D, Mathews M, Almeida T et al (2019) Genetic abnormalities of the optic nerve and color vision. Ophthalmic Genet Dis. https://doi.org/10.1016/b978-0-323-65414-2.00009-x

    Article  Google Scholar 

  18. Deeb SS, Motulsky AG (2019) Chapter 133 - color vision defects. Elsevier 1–17 https://doi.org/10.1016/B978-0-12-383834-6.00142-7

  19. Zeltzer HI (2007) The use of tinted contact lenses in the management of achromatopsia. Optometry 78:328

    Article  Google Scholar 

  20. Gonzalez-Cordero A, West EL, Pearson RA et al (2013) Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 31:741–747

    Article  CAS  Google Scholar 

  21. Roosing S, Thiadens AA, Hoyng CB et al (2014) Causes and consequences of inherited cone disorders. Prog Retin Eye Res 42:1–26

    Article  CAS  Google Scholar 

  22. Marangoni D, Vijayasarathy C, Bush RA et al (2015) Intravitreal ciliary neurotrophic factor transiently improves cone-mediated function in a CNGB3-/- mouse model of achromatopsia. Invest Ophthalmol Vis Sci 56:6810–6822

    Article  CAS  Google Scholar 

  23. Petersen-Jones SM (2010) Viral vectors for targeting the canine retina: a review. Vet Ophthalmol 15(suppl 2):29–34

    Google Scholar 

  24. Sweigard JH, Cashman SM, Kumar-Singh R (2010) Adenovirus vectors targeting distinct cell types in the retina. Invest Ophthalmol Vis Sci 51:2219–2228

    Article  Google Scholar 

  25. Du W, Tao Y, Deng WT et al (2015) Vitreal delivery of AAV vectored CNGA3 restores cone function in CNGA3-/-/Nrl-/- mice, an all-cone model of CNGA3 achromatopsia. Hum Mol Genet 24:3699–3707

    Article  CAS  Google Scholar 

  26. Center for biologics evaluation and research. (2018). What is gene therapy? Retrieved August 26, 2020, from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/what-gene-therapy

  27. Uyhazi KE, Bennett J (2019) Blinded by the light: a nonhuman primate model of achromatopsia. J Clin Invest 129(2):513–515

    Article  Google Scholar 

  28. Trapani I, Tornabene P, Auricchio A (2020) Large gene delivery to the retina with AAV vectors: Are we there yet? Gene Ther. https://doi.org/10.1038/s41434-020-0174-4

    Article  PubMed  Google Scholar 

  29. Tornabene P, Trapani I, Minopoli R et al (2019) Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci Transl Med 11(492):4523

    Article  Google Scholar 

  30. Moshiri A, Chen R, Kim S et al (2019) A nonhuman primate model of inherited retinal disease. J Clin Investig 129(2):863–874

    Article  Google Scholar 

  31. Michalakis S, Schön C, Becirovic E, Biel M (2017) Gene therapy for achromatopsia. J Gene Med 19(3):e2944

    Article  Google Scholar 

  32. Michalakis S, Geiger H, Haverkamp S et al (2005) Impaired opsin targeting and cone photoreceptor migration in the retina of mice lacking the cyclic nucleotide-gated channel CNGA3. Invest Ophthalmol Vis Sci 46:1516–1524

    Article  Google Scholar 

  33. Reicher S, Seroussi E, Gootwine E (2010) A mutation in gene CNGA3 is associated with day blindness in sheep. Genomics 95:101–104

    Article  CAS  Google Scholar 

  34. Natkunarajah M, Trittibach P, McIntosh J et al (2008) Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Ther 15(6):463–467. https://doi.org/10.1038/sj.gt.3303074

    Article  CAS  PubMed  Google Scholar 

  35. Petrs-Silva H, Dinculescu A, Li Q et al (2009) High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 17(3):463–471. https://doi.org/10.1038/mt.2008.269

    Article  CAS  PubMed  Google Scholar 

  36. Stieger K, Colle MA, Dubreil L et al (2008) Subretinal delivery of recombinant AAV serotype 8 vector in dogs results in gene transfer to neurons in the brain. Mol Ther 16(5):916–923. https://doi.org/10.1038/mt.2008.41

    Article  CAS  PubMed  Google Scholar 

  37. Mühlfriedel R, Tanimoto N, Schön C et al (2017) AAV-mediated gene supplementation therapy in achromatopsia type 2: preclinical data on therapeutic time window and long-term effects. Front Neurosci. https://doi.org/10.3389/fnins.2017.00292

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pang J, Deng W, Dai X et al (2012) AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia. PLoS ONE 7(4):e35250

    Article  CAS  Google Scholar 

  39. Michalakis S, Mühlfriedel R, Tanimoto N et al (2010) Restoration of cone vision in the CNGA3−/− mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 18(12):2057–2063

    Article  CAS  Google Scholar 

  40. Dai X, He Y, Zhang H et al (2017) Long-term retinal cone rescue using a capsid mutant AAV8 vector in a mouse model of CNGA3-achromatopsia. PLoS ONE 12(11):e0188032

    Article  Google Scholar 

  41. Banin E, Gootwine E, Obolensky A et al (2015) Gene augmentation therapy restores retinal function and visual behavior in a sheep model of CNGA3 achromatopsia. Mol Ther 23(9):1423–1433

    Article  CAS  Google Scholar 

  42. Gootwine E, Abu-Siam M, Obolensky A et al (2017) Gene augmentation therapy for a missense substitution in the cGMP-binding domain of ovine CNGA3 gene restores vision in day-blind sheep. Investig Opthalmol Vis Sci 58(3):1577

    Article  CAS  Google Scholar 

  43. Fischer M, Michalakis S, Wilhelm B et al (2020) Safety and vision outcomes of subretinal gene therapy targeting cone photoreceptors in achromatopsia. JAMA Ophthalmol 138(6):643

    Article  Google Scholar 

  44. - Safety and efficacy trial of aav gene therapy in patients with CNGA3 Achromatopsia - Full Text View - clinicaltrials.gov [Internet]. Clinicaltrials.gov. 2020 [visited on 28 August 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT02935517

  45. Komáromy A, Alexander J, Rowlan J et al (2010) Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet 19(13):2581–2593

    Article  Google Scholar 

  46. Carvalho L, Xu J, Pearson R et al (2011) Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet 20(16):3161–3175

    Article  CAS  Google Scholar 

  47. Ye G, Budzynski E, Sonnentag P et al (2016) Cone-specific promoters for gene therapy of achromatopsia and other retinal diseases. Hum Gene Ther 27(1):72–82

    Article  CAS  Google Scholar 

  48. Safety and efficacy trial of AAV gene therapy in patients with CNGB3 Achromatopsia - Full Text View - ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2020 [visited on 28 August 2020]. Available from: https://clinicaltrials.gov/ct2/show/NCT02599922

  49. Gene therapy for achromatopsia (CNGB3) - Full Text View - ClinicalTrials.gov [Internet]. Clinicaltrials.gov. 2020 [visited on 28 August 2020]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03001310

  50. Kohl S, Baumann B, Broghammer M et al (2000) Mutations in the CNGB3 gene encoding the betasubunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum Mol Genet 9:2107–2116

    Article  CAS  Google Scholar 

  51. Alexander J, Umino Y, Everhart D et al (2007) Restoration of cone vision in a mouse model of achromatopsia. Nat Med 13(6):685–687

    Article  CAS  Google Scholar 

  52. Pang J, Alexander J, Lei B et al (2009) Achromatopsia as a potential candidate for gene therapy. Retinal Degener Dis Adv Exp Med Biol 2009:639–646. https://doi.org/10.1007/978-1-4419-1399-9_73

    Article  CAS  Google Scholar 

  53. Mancuso K, Hauswirth W, Li Q et al (2009) Gene therapy for red–green colour blindness in adult primates. Nature 461(7265):784–787

    Article  CAS  Google Scholar 

  54. Zhang Z, Pang J, Xia F et al (2011) AAV-mediated gene therapy restores cone function in a rat with an M-cone opsin deficiency, a model for blue cone monochromacy. Invest Ophthalmol Vis Sci 52(14):1403–1403

    Google Scholar 

  55. Deng W, Li J, Zhu P et al (2019) Rescue of M-cone function in aged Opn1mw−/− mice, a model for late-stage blue cone monochromacy. Invest Ophthalmol Vis Sci 60(10):3644

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Al-Haddad came up with the idea for this review article. Dr. El Moussawi performed a thorough literature search and review. Dr. El Moussawi and Miss Boueiri drafted the review article that was then critically revised by Dr. Al-Haddad.

Corresponding author

Correspondence to Christiane Al-Haddad.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Moussawi, Z., Boueiri, M. & Al-Haddad, C. Gene therapy in color vision deficiency: a review. Int Ophthalmol 41, 1917–1927 (2021). https://doi.org/10.1007/s10792-021-01717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01717-0

Keywords

Navigation