Advertisement

Efficacy of astigmatic correction after femtosecond laser-guided cataract surgery using intraoperative aberrometry in eyes with low-to-moderate levels of corneal astigmatism

  • Paz Orts
  • David P. PiñeroEmail author
  • Salvador Aguilar
  • Pedro Tañá
Original Paper
  • 19 Downloads

Abstract

Purpose

To evaluate the efficacy of astigmatic correction with two types of toric intraocular lenses (IOLs) after femtosecond laser-assisted cataract surgery (FLACS) in eyes with low-to-moderate corneal astigmatism using intraoperative aberrometry for optimizing the position of the toric IOL.

Methods

Retrospective study includes a total of 99 eyes of 73 patients with anterior keratomeric astigmatism ≤ 3 D and undergoing FLACS (Catalys, Johnson & Johnson Vision) with implantation of a monofocal (Ankoris, PhysIOL) or a multifocal toric IOL with the same platform (Pod FT, PhysIOL). In all cases, intraoperative aberrometry was used (Optiwave refractive analysis, ORA, system, Alcon). Visual and refractive outcomes were evaluated preoperatively and at 4 months after surgery with vector analysis of astigmatic changes.

Results

A total of 89.9%, 93.9% and 97.0% showed a postoperative sphere, cylinder and spherical equivalent within ± 0.50 D, respectively. Mean difference vector (DV) was 0.22 ± 0.27 D, mean magnitude of error (ME) was 0.13 ± 0.29 D, and mean angle of error (AE) was 1.52 ± 11.64°. Poor correlations of preoperative corneal astigmatism with DV (r = − 0.032, p = 0.833), ME (r = − 0.344, p = 0.001) and AE (r = − 0.094, p = 0.377) were found. Likewise, no statistically significant differences were found between monofocal and multifocal toric IOL subgroups in DV (p = 0.580), ME (p = 0.702) and AE (p = 0.499).

Conclusions

The combination of FLACS and intraoperative aberrometry to optimize the position of a toric IOL allows a very efficacious correction of preexisting low-to-moderate corneal astigmatism.

Keywords

Intraoperative aberrometry Toric IOLs Corneal astigmatism Femtosecond laser-assisted cataract surgery Vector analysis 

Notes

Acknowledgements

The author David P Piñero has been supported by the Ministry of Economy, Industry and Competitiveness of Spain within the program Ramón y Cajal, RYC-2016-20471.

Compliance with ethical standards

Conflict of interest

The authors have no proprietary or commercial interest in the medical devices that are involved in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Ferrer-Blasco T, Montés-Micó R, Peixoto-de-Matos SC et al (2009) Prevalence of corneal astigmatism before cataract surgery. J Cataract Refract Surg 35:70–75PubMedCrossRefGoogle Scholar
  2. 2.
    Hoffmann PC, Hütz WW (2010) Analysis of biometry and prevalence data for corneal astigmatism in 23 239 eyes. J Cataract Refract Surg 36:1479–1485PubMedCrossRefGoogle Scholar
  3. 3.
    Guo H, Atchison DA (2010) Subjective blur limits for cylinder. Optom Vis Sci 87:E549–E559PubMedCrossRefGoogle Scholar
  4. 4.
    Miller AD, Kris MJ, Griffiths AC (1997) Effect of small focal errors on vision. Optom Vis Sci 74:521–526PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hayashi K, Manabe S, Yoshida M et al (2010) Effect of astigmatism on visual acuity in eyes with a diffractive multifocal intraocular lens. J Cataract Refract Surg 36:1323–1329PubMedCrossRefGoogle Scholar
  6. 6.
    Leon P, Pastore MR, Zanei A et al (2015) Correction of low corneal astigmatism in cataract surgery. Int J Ophthalmol 8:719–724PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gangwani V, Hirnschall N, Findl O et al (2014) Multifocal toric intraocular lenses versus multifocal intraocular lenses combined with peripheral corneal relaxing incisions to correct moderate astigmatism. J Cataract Refract Surg 40:1625–1632PubMedCrossRefGoogle Scholar
  8. 8.
    Nanavaty MA, Bedi KK, Ali S et al (2017) Toric intraocular lenses versus peripheral corneal relaxing incisions for astigmatism between 0.75 and 2.5 diopters during cataract surgery. Am J Ophthalmol 180:165–177PubMedCrossRefGoogle Scholar
  9. 9.
    Kessel L, Andresen J, Tendal B et al (2016) Toric intraocular lenses in the correction of astigmatism during cataract surgery. Ophthalmology 123:275–286PubMedCrossRefGoogle Scholar
  10. 10.
    Emesz M, Dexl AK, Krall EM et al (2015) Randomized controlled clinical trial to evaluate different intraocular lenses for the surgical compensation of low to moderate-to-high regular corneal astigmatism during cataract surgery. J Cataract Refract Surg 41:2683–2694PubMedCrossRefGoogle Scholar
  11. 11.
    Hirnschall N, Hoffmann PC, Draschl P et al (2014) Evaluation of factors influencing the remaining astigmatism after toric intraocular lens implantation. J Refract Surg 30:394–400PubMedCrossRefGoogle Scholar
  12. 12.
    Hirnschall N, Gangwani V, Crnej A et al (2014) Correction of moderate corneal astigmatism during cataract surgery: toric intraocular lens versus peripheral corneal relaxing incisions. J Cataract Refract Surg 40:354–361PubMedCrossRefGoogle Scholar
  13. 13.
    Ho J-D, Tsai C-Y, Liou S-W (2009) Accuracy of corneal astigmatism estimation by neglecting the posterior corneal surface measurement. Am J Ophthalmol 147:788–795PubMedCrossRefGoogle Scholar
  14. 14.
    Goggin M, Zamora-Alejo K, Esterman A et al (2015) Adjustment of anterior corneal astigmatism values to incorporate the likely effect of posterior corneal curvature for toric intraocular lens calculation. J Refract Surg 31:98–102PubMedCrossRefGoogle Scholar
  15. 15.
    Felipe A, Artigas JM, Díez-Ajenjo A et al (2011) Residual astigmatism produced by toric intraocular lens rotation. J Cataract Refract Surg 37:1895–1901PubMedCrossRefGoogle Scholar
  16. 16.
    Savini G, Næser K, Schiano-Lomoriello D et al (2017) Optimized keratometry and total corneal astigmatism for toric intraocular lens calculation. J Cataract Refract Surg 43:1140–1148PubMedCrossRefGoogle Scholar
  17. 17.
    de Sanctis U, Donna P, Penna RR et al (2017) Corneal astigmatism measurement by ray tracing versus anterior surface-based keratometry in candidates for toric intraocular lens implantation. Am J Ophthalmol 177:1–8PubMedCrossRefGoogle Scholar
  18. 18.
    Koch DD, Jenkins RB, Weikert MP et al (2013) Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism. J Cataract Refract Surg 39:1803–1809PubMedCrossRefGoogle Scholar
  19. 19.
    Preussner PR, Hoffmann P, Wahl J (2015) Impact of posterior corneal surface on toric intraocular lens (IOL) calculation. Curr Eye Res 40:809–814PubMedCrossRefGoogle Scholar
  20. 20.
    Hoffmann PC, Wahl J, Hütz WW et al (2013) A ray tracing approach to calculate toric intraocular lenses. J Refract Surg 29:402–408PubMedCrossRefGoogle Scholar
  21. 21.
    Abulafia A, Barrett GD, Kleinmann G et al (2015) Prediction of refractive outcomes with toric intraocular lens implantation. J Cataract Refract Surg 41:936–944PubMedCrossRefGoogle Scholar
  22. 22.
    Abulafia A, Koch DD, Wang L et al (2016) New regression formula for toric intraocular lens calculations. J Cataract Refract Surg 42:663–671PubMedCrossRefGoogle Scholar
  23. 23.
    Cionni RJ, Dimalanta R, Breen M et al (2018) A large retrospective database analysis comparing outcomes of intraoperative aberrometry with conventional preoperative planning. J Cataract Refract Surg 44:1230–1235PubMedCrossRefGoogle Scholar
  24. 24.
    Rastogi A, Khanam S, Goel Y et al (2018) Comparative evaluation of rotational stability and visual outcome of toric intraocular lenses with and without a capsular tension ring. Indian J Ophthalmol 66:411–415PubMedPubMedCentralGoogle Scholar
  25. 25.
    Hahn U, Krummenauer F, Schmickler S et al (2019) Rotation of a toric intraocular lens with and without capsular tension ring: data from a multicenter non-inferiority randomized clinical trial (RCT). BMC Ophthalmol 19:143PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Alpins NA (1997) New method of targeting vectors to treat astigmatism. J Cataract Refract Surg 23:65–75PubMedCrossRefGoogle Scholar
  27. 27.
    Alpins N (2001) Astigmatism analysis by the Alpins method. J Cataract Refract Surg 27:31–49PubMedCrossRefGoogle Scholar
  28. 28.
    Espaillat A, Pérez O, Potvin R (2016) Clinical outcomes using standard phacoemulsification and femtosecond laser-assisted surgery with toric intraocular lenses. Clin Ophthalmol 10:555–563PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kranitz K, Miháltz K, Sándor GL et al (2012) Intraocular lens tilt and decentration measured by Scheimpflug camera following manual or femtosecond laser-created continuous circular capsulotomy. J Refract Surg 28:259–263PubMedCrossRefGoogle Scholar
  30. 30.
    Hatch KM, Woodcock EC, Talamo JH (2015) Intraocular lens power selection and positioning with and without intraoperative aberrometry. J Refract Surg 31:237–242PubMedCrossRefGoogle Scholar
  31. 31.
    Bandeira F, Morral M, Elies D et al (2018) Transitional conic toric intraocular lens for the management of corneal astigmatism in cataract surgery. Clin Ophthalmol 12:1071–1079PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mairot A, El Chehab H, Agard E et al (2018) Low-power versus medium-power toric intraocular lenses in cataract surgery, about 110 eyes. J Fr Ophtalmol 41:302–307PubMedCrossRefGoogle Scholar
  33. 33.
    Razmjoo H, Ghoreishi M, Milasi AM et al (2017) Toric intraocular lens for astigmatism correction in cataract patients. Adv Biomed Res 6:123PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ferreira TB, Berendschot TT, Ribeiro FJ (2016) Clinical outcomes after cataract surgery with a new transitional toric intraocular lens. J Refract Surg 32:452–459PubMedCrossRefGoogle Scholar
  35. 35.
    Epitropoulos AT (2016) Visual and refractive outcomes of a toric presbyopia-correcting intraocular lens. J Ophthalmol 2016:7458210PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kawahara A, Takayanagi Y (2016) Vector analysis investigation of toric intraocular lens with no deviation from the intended axis. Clin Ophthalmol 10:2199–2203PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Mojzis P, Majerova K, Plaza-Puche AB et al (2015) Visual outcomes of a new toric trifocal diffractive intraocular lens. J Cataract Refract Surg 41:2695–2706PubMedCrossRefGoogle Scholar
  38. 38.
    Bachernegg A, Rückl T, Strohmaier C et al (2015) Vector analysis, rotational stability, and visual outcome after implantation of a new aspheric toric IOL. J Refract Surg 31:513–520PubMedCrossRefGoogle Scholar
  39. 39.
    Visser N, Beckers HJ, Bauer NJ et al (2014) Toric vs aspherical control intraocular lenses in patients with cataract and corneal astigmatism: a randomized clinical trial. JAMA Ophthalmol 132:1462–1468PubMedCrossRefGoogle Scholar
  40. 40.
    Levitz L, Reich J, Roberts K et al (2015) Evaluation of toric intraocular lenses in patients with low degrees of astigmatism. Asia Pac J Ophthalmol 4:245–249CrossRefGoogle Scholar
  41. 41.
    Solomon JD, Ladas J (2017) Toric outcomes: computer-assisted registration versus intraoperative aberrometry. J Cataract Refract Surg 43:498–504PubMedCrossRefGoogle Scholar
  42. 42.
    Woodcock MG, Lehmann R, Cionni RJ et al (2016) Intraoperative aberrometry versus standard preoperative biometry and a toric IOL calculator for bilateral toric IOL implantation with a femtosecond laser: one-month results. J Cataract Refract Surg 42:817–825PubMedCrossRefGoogle Scholar
  43. 43.
    Goggin M, Moore S, Esterman A (2011) Toric intraocular lens outcome using the manufacturer’s prediction of corneal plane equivalent intraocular lens cylinder power. Arch Ophthalmol 129:1004–1008PubMedCrossRefGoogle Scholar
  44. 44.
    Vandekerckhove K (2018) Rotational stability of monofocal and trifocal intraocular toric lenses with identical design and material but different surface treatment. J Refract Surg 34:84–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Clínicas OFTALVISTAlicanteSpain
  2. 2.Department of Optics, Pharmacology and AnatomyUniversity of AlicanteAlicanteSpain

Personalised recommendations