Advertisement

International Ophthalmology

, Volume 39, Issue 12, pp 2923–2928 | Cite as

Appearance of herpes simplex keratitis on anterior segment optical coherence tomography

  • Wael Soliman
  • Mohamed A. Nassr
  • Khaled AbdelazeemEmail author
  • Ashraf K. Al-Hussaini
Original Paper
  • 108 Downloads

Abstract

Purpose

To describe the anterior segment AS-OCT findings of herpetic simplex keratitis.

Methods

Forty-two eyes of 42 patients with proven herpetic keratitis of varying severity were included in this prospective, observational, non-comparative case series study. All subjects underwent ophthalmologic examination and AS-OCT imaging.

Results

Twenty-five of the 42 eyes (59.5%) had sub-epithelial infiltrates. In 11 of these cases, the overlying epithelium appeared intact, but in 14 cases, hydropic changes, heaping, and defects were observed. Seventeen eyes (40.5%) showed stromal involvement: six cases with scar at presentation and one case associated with uveitis. Stromal infiltrates were also seen, in ten cases, as a diffuse or local lentiform or spindle-shaped hyper-reflective area in the stroma.

Conclusion

Herpetic keratouveitis has characteristic features on AS-OCT images. This study demonstrates that herpetic keratitis also has characteristic AS-OCT features, including sub-epithelial infiltration and specific stromal hyper-reflective patterns. These features are not unique to herpetic keratitis, but AS-OCT imaging may provide useful supplementary information for diagnosing and monitoring herpetic keratitis.

Keywords

Herpes simplex Herpetic keratitis Anterior segment optical coherence tomography 

Notes

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was reviewed and approved by the Assiut University Institutional Review Board (Assiut, Egypt). All study conduct adhered to the tenets of the Declaration of Helsinki.

Informed consent

Written informed consent was obtained from all individual participants included in this study. Patients had the right to not participate in this study and the right to withdraw from the study without compromising regular, full clinical care.

References

  1. 1.
    Srinivasan M, Gonzales CA, George C, Cevallos V, Mascarenhas JM, Asokan B, Wilkins J, Smolin G, Whitcher JP (1997) Epidemiology and aetiological diagnosis of corneal ulceration in Madurai, south India. Br J Ophthalmol 81:965–971.  https://doi.org/10.1136/bjo.81.11.965 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Claoue CM, Menage MJ, Easty DL (1988) Severe herpetic keratitis. I: prevalence of visual impairment in a clinic population. Br J Ophthalmol 72:530–533.  https://doi.org/10.1136/bjo.72.7.530 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463.  https://doi.org/10.1117/1.1482379 CrossRefPubMedGoogle Scholar
  4. 4.
    Wojtkowski M, Bajraszewski T, Targowski P, Kowalczyk A (2003) Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt Lett 28:1745–1747.  https://doi.org/10.1364/OL.28.001745 CrossRefPubMedGoogle Scholar
  5. 5.
    Sarunic MV, Asrani S, Ja Izatt (2008) Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. Arch Ophthalmol 126:537–542.  https://doi.org/10.1001/archopht.126.4.537 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ramos JL, Li Y, Huang D (2009) Clinical and research applications of anterior segment optical coherence tomography—a review. Clin Exp Ophthalmol 37:81–89.  https://doi.org/10.1111/j.1442-9071.2008.01823.x CrossRefPubMedGoogle Scholar
  7. 7.
    Soliman W, Mohamed TA (2012) Spectral domain anterior segment optical coherence tomography assessment of pterygium and pinguecula. Acta Ophthalmol 90:461–465.  https://doi.org/10.1111/j.1755-3768.2010.01994.x CrossRefPubMedGoogle Scholar
  8. 8.
    Soliman W, Fathalla AM, El-Sebaity DM, Al-Hussaini AK (2013) Spectral domain anterior segment optical coherence tomography in microbial keratitis. Graefes Arch Clin Exp Ophthalmol 251:549–553.  https://doi.org/10.1007/s00417-012-2086-5 CrossRefPubMedGoogle Scholar
  9. 9.
    Yamazaki N, Kobayashi A, Yokogawa H, Ishibashi Y, Oikawa Y, Tokoro M, Sugiyama K (2014) In vivo imaging of radial keratoneuritis in patients with acanthamoeba keratitis by anterior-segment optical coherence tomography. Ophthalmology 121:2153–2158.  https://doi.org/10.1016/j.ophtha.2014.04.043 CrossRefPubMedGoogle Scholar
  10. 10.
    Konstantopoulos A, Yadegarfar G, Fievez M, Anderson DF, Hossain P (2011) In vivo quantification of bacterial keratitis with optical coherence tomography. Invest Ophthalmol Vis Sci 52:1093–1097.  https://doi.org/10.1167/iovs.10-6067 CrossRefPubMedGoogle Scholar
  11. 11.
    Hattori T, Kumakura S, Mori H, Goto H (2013) Depiction of cavity formation in Terrien marginal degeneration by anterior segment optical coherence tomography. Cornea 32:615–618.  https://doi.org/10.1097/ICO.0b013e318259c970 CrossRefPubMedGoogle Scholar
  12. 12.
    Chan TC, Biswas S, Yu M, Jhanji V (2015) Longitudinal evaluation of cornea with swept-source optical coherence tomography and scheimpflug imaging before and after Lasik. Medicine (Baltimore) 94:e1219.  https://doi.org/10.1097/MD.0000000000001219 CrossRefGoogle Scholar
  13. 13.
    Steinberg J, Casagrande MK, Frings A, Katz T, Druchkiv V, Richard G, Linke SJ (2015) Screening for subclinical keratoconus using swept-source fourier domain anterior segment optical coherence tomography. Cornea 34:1413–1419.  https://doi.org/10.1097/ICO.0000000000000568 CrossRefPubMedGoogle Scholar
  14. 14.
    Abdelazeem K, Sharaf M, Saleh MGA, Fathalla AM, Soliman W (2019) Relevance of swept-source anterior segment optical coherence tomography for corneal imaging in patients with flap-related complications after Lasik. Cornea 38:93–97.  https://doi.org/10.1097/ICO.0000000000001773 CrossRefPubMedGoogle Scholar
  15. 15.
    Yokogawa H, Kobayashi A, Mori N, Sugiyama K (2015) Mapping of dendritic lesions in patients with herpes simplex keratitis using in vivo confocal microscopy. Clin Ophthalmol 9:1771–1777.  https://doi.org/10.2147/opth.s92517 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Muller RT, Pourmirzaie R, Pavan-Langston D, Cavalcanti BM, Aggarwal S, Colon C, Jamali A, Cruzat A, Hamrah P (2015) In vivo confocal microscopy demonstrates bilateral loss of endothelial cells in unilateral herpes simplex keratitis. Invest Ophthalmol Vis Sci 56:4899–4906.  https://doi.org/10.1167/iovs.15-16527 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Moein HR, Kheirkhah A, Muller RT, Cruzat AC, Pavan-Langston D, Hamrah P (2018) Corneal nerve regeneration after herpes simplex keratitis: a longitudinal in vivo confocal microscopy study. Ocul Surf 16:218–225.  https://doi.org/10.1016/j.jtos.2017.12.001 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hixson A, Blanc S, Sowka J (2014) Monitoring keratitis resolution with optical coherence tomography. Optom Vis Sci Off Publ Am Acad Optom 91:S40–S45.  https://doi.org/10.1097/OPX.0000000000000189 CrossRefGoogle Scholar
  19. 19.
    Abbouda A, Estrada AV, Rodriguez AE, Alio JL (2014) Anterior segment optical coherence tomography in evaluation of severe fungal keratitis infections treated by corneal crosslinking. Eur J Ophthalmol 24:320–324.  https://doi.org/10.5301/ejo.5000424 CrossRefPubMedGoogle Scholar
  20. 20.
    Konstantopoulos A, Kuo J, Anderson D, Hossain P (2008) Assessment of the use of anterior segment optical coherence tomography in microbial keratitis. Am J Ophthalmol 146:534–542.  https://doi.org/10.1016/j.ajo.2008.05.030 CrossRefPubMedGoogle Scholar
  21. 21.
    Wilhelmus KR, Sugar J, Hyndiuk RA, Stulting RD (2004) Corneal thickness changes during herpes simplex virus disciform keratitis. Cornea 23:154–157CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology, Faculty of MedicineAssiut UniversityAssiutEgypt
  2. 2.North West Anglia NHS Foundation TrustPeterboroughUK
  3. 3.Department of OphthalmologyAssiut University HospitalsAssiutEgypt

Personalised recommendations