International Ophthalmology

, Volume 39, Issue 12, pp 2947–2973 | Cite as

Choroidal binarization analysis: clinical application

  • Sara CrisostomoEmail author
  • Joana Cardigos
  • Diogo Hipólito Fernandes
  • Maria Elisa Luís
  • Ricardo Figueiredo
  • Nuno Moura-Coelho
  • João Paulo Cunha
  • Luís Abegão Pinto
  • Joana Ferreira



Image processing of optical coherence tomography scans through binarization techniques represent a non-invasive way to separately asses and measure choroidal components, in vivo. In this review, we systematically search the scientific literature regarding binarization studies published so far.


A systematic research was conducted at PubMed database, including English literature articles for all of the following terms in various combinations: binarization, choroid/al, enhanced depth spectral domain/swept source optic coherence tomography, and latest publications up to November 2018 were reviewed.


Thirty-seven articles were included and analyzed regarding studied disease, binarization method, studied variables, and outcomes. Most of the studies have focused on the more common retinal pathologies, such as age-related macular degeneration, central serous chorioretinopathy and diabetic retinopathy but binarization techniques have also been applied to the study of choroidal characteristics in ocular inflammatory diseases, corneal dystrophies and in postsurgical follow-up. Advantages and disadvantages of binarization techniques are also discussed.


Binarization of choroidal images seems to represent a promising approach to study choroid subcomponents in an increasingly detailed manner.


Choroid Choroidal imaging Binarization Optic coherence tomography 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168. CrossRefPubMedGoogle Scholar
  2. 2.
    Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29CrossRefGoogle Scholar
  3. 3.
    Kur J, Newman EA, Chan-ling T (2012) Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31:377–406. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Castro-Correia J (1995) Understanding the choroid. Int Ophthalmol 19:135–147. CrossRefPubMedGoogle Scholar
  5. 5.
    Imamura Y, Fujiwara T, Margolis RON, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 29:1469–1473CrossRefGoogle Scholar
  6. 6.
    Chung SE, Kang SW, Lee JH, Kim YT (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118:840–845. CrossRefPubMedGoogle Scholar
  7. 7.
    Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450. CrossRefPubMedGoogle Scholar
  8. 8.
    Gomi F, Tano Y (2008) Polypoidal choroidal vasculopathy and treatments. Curr Opin Ophthalmol 19:208–212. CrossRefPubMedGoogle Scholar
  9. 9.
    Koizumi H, Yamagishi T, Yamazaki T (2011) Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefe’s Arch Clin Exp Ophthalmol 249:1123–1128. CrossRefGoogle Scholar
  10. 10.
    Grossniklaus HE, Green WR (2004) Choroidal neovascularization. Am J Ophthalmol 137:496–503CrossRefGoogle Scholar
  11. 11.
    Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500. CrossRefPubMedGoogle Scholar
  12. 12.
    Spraul CW, Lang GE, Lang GK, Grossniklaus HE (2002) Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vis Res 42:923–932. CrossRefPubMedGoogle Scholar
  13. 13.
    Fryczkowski AW (1994) Anatomical and functional choroidal lobuli. Int Ophthalmol 18:131–141CrossRefGoogle Scholar
  14. 14.
    Hidayat AA, Fine BS (1985) Diabetic choroidopathy: light and electron microscopic observations of seven cases. Ophthalmology 92:512–522. CrossRefPubMedGoogle Scholar
  15. 15.
    Sonoda S, Sakamoto T, Yamashita T et al (2014) Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci 55:3893–3898. CrossRefPubMedGoogle Scholar
  16. 16.
    Bernsen J (1986) Dynamic thresholding of grey-level images. In: Proceedings of the international conference on pattern recognition, pp 1251–1255Google Scholar
  17. 17.
    Niblack W (1986) An introduction to digital image processing, vol 34. Prentice-Hall, Englewood CliffsGoogle Scholar
  18. 18.
    Agrawal R, Gupta P, Tan KA et al (2016) Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Nature 6:1–9. CrossRefGoogle Scholar
  19. 19.
    Agrawal R, Salman M, Tan KA et al (2016) Choroidal vascularity index (CVI)—a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS ONE 11:e0146344CrossRefGoogle Scholar
  20. 20.
    Kuroda Y, Ooto S, Yamashiro K et al (2016) Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography. Am J Ophthalmol 169:199–207. CrossRefPubMedGoogle Scholar
  21. 21.
    Wang JC, Laíns I, Providência J et al (2017) Diabetic choroidopathy: choroidal vascular density and volume in diabetic retinopathy with swept-source optical coherence tomography. Am J Ophthalmol 184:75–83. CrossRefPubMedGoogle Scholar
  22. 22.
    Zheng F, Gregori G, Schaal KB et al (2018) Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging. Invest Ophthalmol Vis Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fujiwara A, Morizane Y, Hosokawa M et al (2016) Factors affecting choroidal vascular density in normal eyes: quantification using en face swept-source optical coherence tomography. Am J Ophthalmol 170:1–9. CrossRefPubMedGoogle Scholar
  24. 24.
    Sonoda S, Sakamoto T, Kakiuchi N et al (2017) Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images. Jpn J Ophthalmol. CrossRefPubMedGoogle Scholar
  25. 25.
    Vupparaboina KK, Richhariya A, Chhablani J, Jana S (2017) Optical coherence tomography imaging: automated binarization of choroid for stromal-luminal analysis. In: 2016 International conference on signal and information processing, IConSIP 2016Google Scholar
  26. 26.
    Mahajan NR, Donapati RCR, Channappayya SS et al (2013) An automated algorithm for blood vessel count and area measurement in 2-D choroidal scan images. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp 3355–3358Google Scholar
  27. 27.
    Uppugunduri SR, Rasheed MA, Richhariya A et al (2018) Automated quantification of Haller’ s layer in choroid using swept-source optical coherence tomography. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sonoda S, Sakamoto T, Yamashita T et al (2015) Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 159:1123–1131 (e1) CrossRefGoogle Scholar
  29. 29.
    Gupta P, Jing T, Marziliano P et al (2015) Distribution and determinants of choroidal thickness and volume using automated segmentation software in a population-based study. Am J Ophthalmol 159:293–301 (e3) CrossRefGoogle Scholar
  30. 30.
    Sansom LT, Suter CA, McKibbin M (2016) The association between systolic blood pressure, ocular perfusion pressure and subfoveal choroidal thickness in normal individuals. Acta Ophthalmol 94:e157–e158. CrossRefPubMedGoogle Scholar
  31. 31.
    Wei X, Ting DSW, Ng WY et al (2016) Choroidal vascularity index—a novel optical coherence tomography based parameter in patients with exudative age-related macular degeneration. Retina 37(6):1120–1125CrossRefGoogle Scholar
  32. 32.
    Bakthavatsalam M, Ng DSC, Lai FHP et al (2017) Choroidal structures in polypoidal choroidal vasculopathy, neovascular age-related maculopathy, and healthy eyes determined by binarization of swept source optical coherence tomographic images. Graefe’s Arch Clin Exp Ophthalmol 255:935–943. CrossRefGoogle Scholar
  33. 33.
    Ruiz-Medrano J, Flores-Moreno I, Peña-García P et al (2014) Macular choroidal thickness profile in a healthy population measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 55:3532–3542. CrossRefPubMedGoogle Scholar
  34. 34.
    Koh LHL, Agrawal R, Khandelwal N et al (2017) Choroidal vascular changes in age-related macular degeneration. Acta Ophthalmol 95:e597–e601. CrossRefPubMedGoogle Scholar
  35. 35.
    Ozkaya A, Alagoz C, Garip R et al (2016) The role of indocyanine green angiography imaging in further differential diagnosis of patients with nAMD who are morphologically poor responders to ranibizumab in a real-life setting. Eye 30:958–965. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cho M, Barbazetto IA, Freund KB (2009) Refractory neovascular age-related macular degeneration secondary to polypoidal choroidal vasculopathy. Am J Ophthalmol 148:70–78. CrossRefPubMedGoogle Scholar
  37. 37.
    Ma L, Li Z, Liu K et al (2015) Association of genetic variants with polypoidal choroidal vasculopathy: a systematic review and updated meta-analysis. Ophthalmology 122:1854–1865. CrossRefPubMedGoogle Scholar
  38. 38.
    Ming C, Cheung G, Yang E et al (2015) The natural history of polypoidal choroidal vasculopathy: a multi-center series of untreated Asian patients. Graefe’s Arch Clin Exp Ophthalmol. CrossRefGoogle Scholar
  39. 39.
    Jirarattanasopa P, Ooto S, Nakata I et al (2016) Complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy. Science. CrossRefGoogle Scholar
  40. 40.
    Manjunath V, Goren J, Fujimoto JG, Duker JS (2011) Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol 152:663–668. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jonas JB, Forster TM, Steinmetz P et al (2014) Choroidal thickness in age-related macular degeneration. Retina 34:1149–1155. CrossRefPubMedGoogle Scholar
  42. 42.
    Warrow DJ, Hoang QV, Freund KB (2013) Pachychoroid pigment epitheliopathy. Retina 33:1659–1672. CrossRefPubMedGoogle Scholar
  43. 43.
    Pang CE, Freund KB (2015) Pachychoroid neovasculopathy. Retina 35:1–9. CrossRefPubMedGoogle Scholar
  44. 44.
    Gallego-Pinazo R, Dolz-Marco R, Gómez-Ulla F et al (2014) Pachychoroid diseases of the macula. Med Hypothesis Discov Innov Ophthalmol 3:111–115PubMedPubMedCentralGoogle Scholar
  45. 45.
    Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2015) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 1:499–516. CrossRefGoogle Scholar
  46. 46.
    Balaratnasingam C, Lee WK, Koizumi H et al (2016) Polypoidal choroidal vasculopathy a distinct disease or manifestation of many? Retina 36:1–8CrossRefGoogle Scholar
  47. 47.
    Daizumoto E, Mitamura Y, Sano H et al (2017) Changes of choroidal structure after intravitreal aflibercept therapy for polypoidal choroidal vasculopathy. Br J Ophthalmol 101:56–61. CrossRefPubMedGoogle Scholar
  48. 48.
    Ng DS, Bakthavatsalam M, Lai FH-P et al (2017) Classification of exudative age-related macular degeneration with pachyvessels on en face swept-source optical coherence tomography. Invest Opthalmol Vis Sci 58:1054. CrossRefGoogle Scholar
  49. 49.
    Gupta P, Shu D, Ting WEI et al (2017) Detailed characterization of choroidal morphologic and vascular features in age-related macular degeneration and polypoidal choroidal. Retina 37:2269–2280CrossRefGoogle Scholar
  50. 50.
    Ting DSW, Yanagi Y, Agrawal R et al (2017) Choroidal remodeling in age-related macular degeneration and polypoidal choroidal vasculopathy: a 12-month Prospective study. Sci Rep 7:7868. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Masuda N, Kojima M, Yamashita M et al (2017) Choroidal structure determined by binarizing optical coherence tomography images in eyes with reticular pseudodrusen. Clin Ophthalmol 11:791–795. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Donald J, Gass MMD (1967) Pathogenisis of disciform detachment. Am J Ophthalmol 63:573/1–585/13. CrossRefGoogle Scholar
  53. 53.
    Spaide RF, Campeas L, Haas A et al (1996) Central serous chorioretinopathy in younger and older adults. Ophthalmology 103:2070–2080. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gemenetzi M, De Salvo G, Lotery AJ (2010) Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye 24:1743–1756. CrossRefPubMedGoogle Scholar
  55. 55.
    Nicholson B, Noble J, Forooghian F, Meyerle C (2013) MAJOR REVIEW central serous chorioretinopathy: update on pathophysiology and treatment. Surv Ophthalmol 58:103–126. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Agrawal R, Chhablani J, Tan KA et al (2016) Choroidal vascularity index in central serous chorioretinopathy. Retina 36:1646–1651. CrossRefPubMedGoogle Scholar
  57. 57.
    Sonoda S, Sakamoto T, Kuroiwa N et al (2016) Structural changes of inner and outer choroid in central serous chorioretinopathy determined by optical coherence tomography. PLoS ONE 11:1–16. CrossRefGoogle Scholar
  58. 58.
    Branchini LA, Adhi M, Regatieri CV et al (2013) Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology 120:1901–1908CrossRefGoogle Scholar
  59. 59.
    Kinoshita T, Mitamura Y, Mori T et al (2016) Changes in choroidal structures in eyes with chronic central serous chorioretinopathy after half-dose photodynamic therapy. PLoS ONE 11:1–15. CrossRefGoogle Scholar
  60. 60.
    Wei WB, Xu L, Jonas JB et al (2012) Subfoveal choroidal thickness: the beijing eye study. Ophthalmology 120:175–180CrossRefGoogle Scholar
  61. 61.
    Ferreira J, Vicente A, Anjos R et al (2015) Choroidal thickness in diabetic patients without retinopathy. Invest Ophthalmol Vis Sci 56:4678Google Scholar
  62. 62.
    Tavares Ferreira J, Proença R, Alves M et al (2017) Retina and choroid of diabetic patients without observed retinal vascular changes: a Longitudinal Study. Am J Ophthalmol 176:15–25CrossRefGoogle Scholar
  63. 63.
    Esmaeelpour M, Povaz B, Hermann B et al (2018) Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci 51:5260–5266. CrossRefGoogle Scholar
  64. 64.
    Querques G, Lattanzio R, Querques L et al (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 53:6017–6024CrossRefGoogle Scholar
  65. 65.
    Kim JT, Lee DH, Joe SG et al (2013) Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci 54:3378–3384. CrossRefPubMedGoogle Scholar
  66. 66.
    Lee HK, Lim JW, Shin MC (2013) Comparison of choroidal thickness in patients with diabetes by spectral-domain optical coherence tomography. Korean J Ophthalmol 27:433–439. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Farias LB, Lavinsky D, Schneider WM et al (2014) Choroidal thickness in patients with diabetes and microalbuminuria. Ophthalmology 121:2071–2073. CrossRefPubMedGoogle Scholar
  68. 68.
    Gerendas BS, Waldstein SM, Simader C et al (2014) Three-dimensional automated choroidal volume assessment on standard spectral-domain optical coherence tomography and correlation with the level of diabetic macular edema. Am J Ophthalmol 158:1039–1048. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Unsal E, Eltutar K, Zirtiloğlu S et al (2014) Choroidal thickness in patients with diabetic retinopathy. Clin Ophthalmol 8:637–642. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Tan K, Laude A, Yip V et al (2016) Choroidal vascularity index—a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus? Acta Ophthalmol 94:e612–e616CrossRefGoogle Scholar
  71. 71.
    Kim M, Ha MJ, Choi SY, Park Y (2018) Choroidal vascularity index in type-2 diabetes analyzed by swept-source optical coherence tomography. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Rao NA, Gupta A, Dustin L et al (2010) Frequency of distinguishing clinical features in Vogt–Koyanagi–Harada disease. Ophthalmology 117:591–599. CrossRefPubMedGoogle Scholar
  73. 73.
    Read RW, Holland GN, Rao NA et al (2001) Revised diagnostic criteria for Vogt–Koyanagi–Harada disease: report of an international committee on nomenclature. Am J Ophthalmol 131:647–652CrossRefGoogle Scholar
  74. 74.
    Moorthy RS, Inomata H, Rao NA (1995) MAJOR REVIEW: Vogt–Koyanagi–Harada Syndrome. Surv Ophthalmol 39(4):265–292CrossRefGoogle Scholar
  75. 75.
    Maruko I, Iida T, Sugano Y et al (2011) Subfoveal choroidal thickness after treatment of Vogt–Koyanagi–Harada disease. Retina 31:510–517. CrossRefPubMedGoogle Scholar
  76. 76.
    Fong AH, Li KK, Wong D (2011) CHOROIDAL evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt–Koyanagi–Harada disease. Retina 31:502–509. CrossRefPubMedGoogle Scholar
  77. 77.
    Nakai K, Gomi F, Ikuno Y et al (2012) Choroidal observations in Vogt–Koyanagi–Harada disease using high-penetration optical coherence tomography. Graefe’s Arch Clin Exp Ophthalmol 250:1089–1095. CrossRefGoogle Scholar
  78. 78.
    Agrawal R, Li LKH, Nakhate V et al (2016) Choroidal Vascularity Index in Vogt–Koyanagi–Harada disease: an EDI-OCT derived tool for monitoring disease progression. Transl Vis Sci Technol 5:7. CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Jaisankar D, Raman R, Sharma HR et al (2017) Choroidal and retinal anatomical responses following systemic corticosteroid therapy in Vogt–Koyanagi–Harada disease using swept-source optical coherence tomography. Ocul Immunol Inflamm 12:1–9Google Scholar
  80. 80.
    Liu S, Du L, Zhou Q et al (2017) The Choroidal Vascularity Index decreases and choroidal thickness increases in Vogt–Koyanagi–Harada disease patients during a recurrent anterior uveitis attack. Ocul Immunol Inflamm 3948:1–7Google Scholar
  81. 81.
    Kawano H, Sonoda S, Yamashita T, Maruko I (2016) Relative changes in luminal and stromal areas of choroid determined by binarization of EDI-OCT images in eyes with Vogt–Koyanagi–Harada disease after treatment. Graefe’s Arch Clin Exp Ophthalmol 254:421–426. CrossRefGoogle Scholar
  82. 82.
    Onal S, Herbort CP, Akbay AKOC (2018) Quantitative analysis of structural alterations in the choroid of patients with active Behcet uveitis. Retina 38:828–840. CrossRefPubMedGoogle Scholar
  83. 83.
    Agarwal A, Agrawal R, Khandelwal N et al (2017) Choroidal structural changes in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm 26(6):838–844CrossRefGoogle Scholar
  84. 84.
    Wong TY, Ferreira A, Hughes R et al (2014) Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am J Ophthalmol 157:9–25. CrossRefPubMedGoogle Scholar
  85. 85.
    Saw SM, Gazzard G, Shin-Yen EC, Chua WH (2005) Myopia and associated pathological complications. Ophthalmic Physiol Opt 25:381–391CrossRefGoogle Scholar
  86. 86.
    Neelam K, Ming C, Cheung G et al (2012) Progress in retinal and eye research choroidal neovascularization in pathological myopia. Prog Retin Eye Res 31:495–525. CrossRefPubMedGoogle Scholar
  87. 87.
    Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM (2013) The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol 155:314–319. CrossRefPubMedGoogle Scholar
  88. 88.
    Nishida Y, Fujiwara T, Imamura Y et al (2012) Choroidal thickness and visual acuity in highly myopic eyes. Retina 32:1229–1236CrossRefGoogle Scholar
  89. 89.
    Gupta P, Thakku SG, Saw SM et al (2017) Characterization of choroidal morphologic and vascular features in young men with high myopia using spectral-domain optical coherence tomography. Am J Ophthalmol 177:27–33. CrossRefPubMedGoogle Scholar
  90. 90.
    Alshareef RA, Khuthaila MK, Goud A et al (2016) Subfoveal choroidal vascularity in myopia: evidence from spectral-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging Retina. CrossRefPubMedGoogle Scholar
  91. 91.
    Ng WY, Ting DSW, Agrawal R et al (2016) Choroidal structural changes in myopic choroidal neovascularization after treatment with antivascular endothelial growth factor over 1 year. Invest Opthalmol Vis Sci 57:4933. CrossRefGoogle Scholar
  92. 92.
    Ratra D, Tan ROY, Khandelwal N, Agrawal R (2017) Choroidal structural changes and vascularity index in stargardt disease on swept source optical coherence tomography. Retina. CrossRefPubMedGoogle Scholar
  93. 93.
    Birnbach CD, Järveläínen M, Possin DE, Milam AH (1994) Histopathology and immunocytochemistry of the neurosensory retina in fundus flavimaculatus. Ophthalmology 101:1211–1219. CrossRefPubMedGoogle Scholar
  94. 94.
    Lopez PF, Maumenee IH, De Cruz Z, Green WR (1990) Autosomal-dominant fundus flavimaculatus clinicopathologic correlation. Ophthalmology 97:798–809. CrossRefPubMedGoogle Scholar
  95. 95.
    Hirashima T, Miyata M, Ishihara K et al (2017) Choroidal vasculature in bietti crystalline dystrophy with CYP4V2 mutations and in retinitis pigmentosa with EYS mutations. Invest Ophthalmol Vis Sci 58:3871–3878. CrossRefPubMedGoogle Scholar
  96. 96.
    Agrawal R, Wei X, Goud A et al (2017) Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography. Acta Ophthalmol 95(8):e770–e775CrossRefGoogle Scholar
  97. 97.
    Spaide RF, Ryan EH (2015) Loculation of fluid in the posterior choroid in eyes with central serous chorioretinopathy. Am J Ophthalmol 160:1211–1216. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sara Crisostomo
    • 1
    Email author
  • Joana Cardigos
    • 1
  • Diogo Hipólito Fernandes
    • 1
  • Maria Elisa Luís
    • 1
  • Ricardo Figueiredo
    • 2
  • Nuno Moura-Coelho
    • 1
  • João Paulo Cunha
    • 1
    • 4
  • Luís Abegão Pinto
    • 3
    • 5
  • Joana Ferreira
    • 1
    • 4
  1. 1.Department of OphthalmologyCentral Lisbon Hospital CenterLisbonPortugal
  2. 2.Department of OphthalmologyÉvora Espirito Santo HospitalÉvoraPortugal
  3. 3.Department of OphthalmologyNorth Lisbon Hospital CenterLisbonPortugal
  4. 4.NOVA Medical School/Faculdade de Ciências Médicas da UNLLisbonPortugal
  5. 5.Visual Sciences Study Center, Faculty of MedicineLisbon UniversityLisbonPortugal

Personalised recommendations