International Ophthalmology

, Volume 39, Issue 4, pp 957–970 | Cite as

Recent advances in the diagnosis and treatment of Coats’ disease

  • Xinyue Yang
  • Chenguang Wang
  • Guanfang SuEmail author



To review and summarize the recent progress in the diagnosis and treatment of Coats’ disease.


Literature was collected from Web of Science, Medline and Pubmed, through searching of these keywords: “Coats’ disease”, “diagnosis” and “treatment”.


Coats’ disease is characterized by idiopathic leaky retinal vascular telangiectasia and microvascular abnormalities often accompanied by intraretinal or subretinal exudation and retinal detachment. Neovascular glaucoma and phthisis bulbi often occur in advanced cases. Coats’ disease has significant diversity in terms of its clinical presentation and morphology. Anti-VEGF therapy combined with laser photocoagulation for early Coats’ disease and anti-VEGF therapy combined with minimally invasive vitrectomy for advanced Coats’ disease can achieve good efficacy.


Early diagnosis and timely treatment based on clinical stage are critical to retaining the patient’s visual function. Patients should be aware that close long-term follow-up is necessary.


Coats’ disease Diagnosis Treatment VEGF 



This work was supported by all members of the Central Laboratory of the Second Hospital at Jilin University. The authors alone are responsible for the content and writing of the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Ghorbanian S, Jaulim A, Chatziralli IP (2012) Diagnosis and treatment of coats’ disease: a review of the literature. Ophthalmologica 227:175–182. CrossRefGoogle Scholar
  2. 2.
    Grosso A, Pellegrini M, Cereda MG, Panico C, Staurenghi G, Sigler EJ (2015) Pearls and pitfalls in diagnosis and management of coats disease. Retina 35:614–623. CrossRefGoogle Scholar
  3. 3.
    Morris B, Foot B, Mulvihill A (2010) A population-based study of Coats disease in the United Kingdom I: epidemiology and clinical features at diagnosis. Eye 24:1797–1801. CrossRefGoogle Scholar
  4. 4.
    Peng J, Zhang Q, Chen C, Huang Q, Li Y, Zhao P (2017) Early onset coats’ disease initially treated as unilateral ROP at 39 weeks postmenstrual age: a case report. BMC Ophthalmol 17:145. CrossRefGoogle Scholar
  5. 5.
    Charles PLF (2014) Coats disease in a 3-week-old boy. J AAPOS 18:86–88. CrossRefGoogle Scholar
  6. 6.
    Alqahtani AA, Almasaud JM, Ghazi NG (2015) Clinical characteristics and treatment outcomes of coats disease in a Saudi Arabian population. Retina 35:2091–2099. CrossRefGoogle Scholar
  7. 7.
    Stanga PE, Romano F, Chwiejczak K, Tsamis E, Stringa F, Biswas S et al (2017) Swept-source optical coherence tomography angiography assessment of fellow eyes in coats disease. Retina. Google Scholar
  8. 8.
    Blair MP, Ulrich JN, Elizabeth HM, Shapiro MJ (2013) Peripheral retinal nonperfusion in fellow eyes in coats disease. Retina 33:1694–1699. CrossRefGoogle Scholar
  9. 9.
    Nucci P (2017) Coats’ disease: not such a smooth ride. Graefes Arch Clin Exp Ophthalmol 255:1879–1880. CrossRefGoogle Scholar
  10. 10.
    Rabiolo A, Marchese A, Sacconi R, Cicinelli MV, Grosso A, Querques L et al (2017) Refining Coats’ disease by ultra-widefield imaging and optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 255:1881–1890. CrossRefGoogle Scholar
  11. 11.
    Daruich A, Matet A, Munier FL (2017) Younger age at presentation in children with coats disease is associated with more advanced stage and worse visual prognosis: a retrospective study. Retina 38:2239–2246. CrossRefGoogle Scholar
  12. 12.
    Daruich A, Matet A, Munier FL (2018) Cataract development in children with Coats disease: risk factors and outcome. J Am Assoc Pediatr Ophthalmol Strabismus 22:44–49. CrossRefGoogle Scholar
  13. 13.
    Stacey AW, Borri M, Francesco SD, Antenore AS, Menicacci F, Hadjistilianou T (2016) A case of anterior chamber cholesterolosis due to coats’ disease and a review of reported cases. Open Ophthalmol J 10:27–32. CrossRefGoogle Scholar
  14. 14.
    Asaad SZ, Hussain N (2018) Adult coats disease presenting as subfoveal nodule. Case Rep Ophthalmol 9:232–237. CrossRefGoogle Scholar
  15. 15.
    Daruich AL, Moulin AL, Tran HV, Matet A, Munier FL (2016) Subfoveal nodule in Coats’ disease: toward an updated classification predicting visual prognosis. Retina 37:1591–1598. CrossRefGoogle Scholar
  16. 16.
    Shields JA, Shields CL, Honavar SG, Demirci H, Cater J (2001) Classification and management of Coats disease: the 2000 Proctor Lecture. Am J Ophthalmol 131:572–583CrossRefGoogle Scholar
  17. 17.
    Senft SH, Hidayat AA, Cavender JC (1994) Atypical presentation of Coats disease. Retina 14:36–38CrossRefGoogle Scholar
  18. 18.
    Fernandes BF, Odashiro AN, Maloney S, Zajdenweber ME, Lopes AG Jr, Burnier MN (2006) Clinical-histopathological correlation in a case of Coats’ disease. Diagn Pathol 1:24. CrossRefGoogle Scholar
  19. 19.
    Zhao Q, Peng XY, Yang WL, Li DJ, You QS, Jonas JB (2016) Coats’ disease and retrobulbar haemodynamics. Acta Ophthalmol 94:397–400. CrossRefGoogle Scholar
  20. 20.
    Lim WK, Nussenblatt RB, Chan CC (2005) Immunopathologic features of inflammatory coats disease. Arch Ophthalmol 123:279–281. CrossRefGoogle Scholar
  21. 21.
    Kase S, Mori S, Noda K, Ishida S (2018) Anterior proliferative vitreoretinopathy in a patient with Coats disease. Int J Ophthalmol.
  22. 22.
    Ghassemi F, Shields CL, Mohebbi M, Nili Ahmadabadi M, Morsali F, Sabour S (2017) Serum hypercoagulability states in Coats’ disease. Clin Ophthalmol 11:305–310. CrossRefGoogle Scholar
  23. 23.
    Zhao Q, Peng XY, Chen FH, Zhang YP, Wang L, You QS et al (2014) Vascular endothelial growth factor in Coats’ disease. Acta Ophthalmol 92:e225–228. CrossRefGoogle Scholar
  24. 24.
    Zhang H, Liu ZL (2012) Increased nitric oxide and vascular endothelial growth factor levels in the aqueous humor of patients with coats’ disease. J Ocul Pharmacol Ther 28:397–401. CrossRefGoogle Scholar
  25. 25.
    Yang Q, Lu H, Song X, Li S, Wei W (2016) iTRAQ-based proteomics investigation of aqueous humor from patients with Coats’ disease. PLoS ONE 11:e0158611. CrossRefGoogle Scholar
  26. 26.
    Black GCM, Perveen R, Bonshek R, Cahill M, Claytonsmith J, Christopher Lloyd I et al (1999) Coats’ disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene: a role for norrin in retinal angiogenesis. Hum Mol Genet 8:2031–2035CrossRefGoogle Scholar
  27. 27.
    Peene G, Smets E, Legius E, Cassiman C (2018) Unilateral Coats’-like disease and an intragenic deletion in the TERC gene: a case report. Ophthalmic Genet 39:247–250. CrossRefGoogle Scholar
  28. 28.
    Saatci AO, Ayhan Z, Yaman A, Bora E, Ulgenalp A, Kavukcu S (2018) A 12-year-old girl with bilateral coats disease and ABCA4 gene mutation. Case Rep Ophthalmol 9:375–380. CrossRefGoogle Scholar
  29. 29.
    Robitaille JM, Zheng B, Wallace K, Beis MJ, Tatlidil C, Yang J et al (2011) The role of Frizzled-4 mutations in familial exudative vitreoretinopathy and Coats disease. Br J Ophthalmol 95:574. CrossRefGoogle Scholar
  30. 30.
    Den Hollander AI, Davis J, Van DVV, Saskia D, Zonneveld MN, Pierrottet CO, Koenekoop RK et al (2010) CRB1 mutation spectrum in inherited retinal dystrophies. Hum Mutat 24:355CrossRefGoogle Scholar
  31. 31.
    Sohn EH, Michaelides M, Bird AC, Roberts CJ, Moore AT, Smyth D et al (2011) Novel mutation in PANK2 associated with retinal telangiectasis. Br J Ophthalmol 95:149–150. CrossRefGoogle Scholar
  32. 32.
    Wu J-H, Liu J-H, Ko Y-C, Wang C-T, Chung Y-C, Chu K-C et al (2016) Haploinsufficiency of RCBTB1 is associated with Coats disease and familial exudative vitreoretinopathy. Hum Mol Genet 25:1637–1647. CrossRefGoogle Scholar
  33. 33.
    Yonekawa Y, Todorich B, Trese MT (2016) Optical coherence tomography angiography findings in coats’ disease. Ophthalmology 123:1964–1964. CrossRefGoogle Scholar
  34. 34.
    Ong SS, Mruthyunjaya P, Stinnett S, Vajzovic L, Toth CA (2018) Macular features on spectral-domain optical coherence tomography imaging associated with visual acuity in coats’ disease. Invest Ophthalmol Vis Sci 59:3161–3174. CrossRefGoogle Scholar
  35. 35.
    Hautz W, Golebiewska J, Kocyla-Karczmarewicz B (2017) Optical coherence tomography and optical coherence tomography angiography in monitoring coats’ disease. J Ophthalmol 2017:1–8. CrossRefGoogle Scholar
  36. 36.
    Eisenberg L, Castillo M, Kwock L, Mukherji SK, Wallace DK (1997) Proton MR spectroscopy in Coats disease. AJNR Am J Neuroradiol 18:727–729Google Scholar
  37. 37.
    Koozekanani DD Jr, Connor TB, Wirostko WJ (2012) RetCam II fluorescein angiography to guide treatment and diagnosis of Coats disease. Ophthalmic Surg Lasers Imaging. Google Scholar
  38. 38.
    Kumar V, Chandra P, Kumar A (2017) Ultra-wide field imaging in the diagnosis and management of adult-onset Coats’ disease. Clin Exp Optom 100:79–82. CrossRefGoogle Scholar
  39. 39.
    Tsui I, Franco-Cardenas V, Hubschman JP, Schwartz SD (2013) Pediatric retinal conditions imaged by ultra wide field fluorescein angiography. Ophthalmic Surg Lasers Imaging 44:59–67. CrossRefGoogle Scholar
  40. 40.
    Jung EH, Kim JH, Kim SJ, Yu YS (2018) Fluorescein angiographic abnormalities in the contralateral eye with normal fundus in children with unilateral Coats’ disease. Korean J Ophthalmol 32:65–69. CrossRefGoogle Scholar
  41. 41.
    Suzani M, Moore AT (2015) Intraoperative fluorescein angiography-guided treatment in children with early Coats’ disease. Ophthalmology 122:1195–1202. CrossRefGoogle Scholar
  42. 42.
    Shields CL, Uysal Y, Benevides R Jr, Malloy B, Shields JA (2006) Retinoblastoma in an eye with features of Coats’ disease. J Pediatr Ophthalmol Strabismus 43:313–315Google Scholar
  43. 43.
    Mutha V, Agrawal S, Chandra P, Kumar A (2018) Coats disease with exudative retinal detachment simulating cysticercus cyst: misleading ultrasonography! BMJ Case Rep. Google Scholar
  44. 44.
    Michaelides M, Luthert PJ, Cooling R, Firth H, Moore AT (2004) Norrie disease and peripheral venous insufficiency. Eur Heart J 88:1475. Google Scholar
  45. 45.
    Rugwizangoga B, Mwabili T, Scanlan T, Meyer P, Kitinya J (2014) Coats’ disease in Tanzania: first case report and literature review. Afr Health Sci 14:763–768. CrossRefGoogle Scholar
  46. 46.
    Sigler EJ, Randolph JC, Calzada JI, Wilson MW, Haik BG (2014) Current management of Coats disease. Surv Ophthalmol 59:30–46. CrossRefGoogle Scholar
  47. 47.
    Ong SS, Buckley EG, McCuen BW 2nd, Jaffe GJ, Postel EA, Mahmoud TH et al (2017) Comparison of visual outcomes in Coats’ disease: a 20-year experience. Ophthalmology 124:1368–1376. CrossRefGoogle Scholar
  48. 48.
    Nuzzi R, Lavia C, Spinetta R (2017) Paediatric retinal detachment: a review. Int J Ophthalmol 10:1592–1603. Google Scholar
  49. 49.
    Lambert NG, Hoffman RO, Hartnett ME (2016) A case of Coats disease and concurrent anisometropic amblyopia. Am J Ophthalmol Case Rep 4:21–23. CrossRefGoogle Scholar
  50. 50.
    Perrone S, Rossetti A, Sportiello P, Mirabelli P, Cimatti P, Doro D (2016) Coats’ disease: very long-term outcome after early stage conventional treatment. Open Ophthalmol J10:22–26. CrossRefGoogle Scholar
  51. 51.
    Adam RS, Kertes PJ, Lam WC (2007) Observations on the management of Coats’ disease: less is more. Br J Ophthalmol 91:303–306CrossRefGoogle Scholar
  52. 52.
    Pesch KJ, Meyer-Schwickerath G (1967) Light coagulation in morbus Coats and Leber’s retinitis. Klin Monbl Augenheilkd 151:846–853. Google Scholar
  53. 53.
    Ridley ME, Shields JA, Brown GC, Tasman W (1982) Coats’ disease. Evaluation of management. Ophthalmology 89:1381. CrossRefGoogle Scholar
  54. 54.
    Nucci P, Bandello F, Serafino M, Wilson ME (2002) Selective photocoagulation in Coats disease: ten-year follow-up. Eur J Ophthalmol 12:501–505. CrossRefGoogle Scholar
  55. 55.
    Shapiro MJ, Chow CC, Karth PA, Kiernan DF, Blair MP (2011) Effects of green diode laser in the treatment of pediatric Coats disease. Am J Ophthalmol 151:725–731.e722. CrossRefGoogle Scholar
  56. 56.
    Levinson JD (2015) 577-nm yellow laser photocoagulation for Coats disease. Retina 36:1388. CrossRefGoogle Scholar
  57. 57.
    Xuan C, Zhao P, Qi Z, Jin H (2015) Treatment of stage 3 Coats’ disease by endolaser photocoagulation via a two-port pars plana nonvitrectomy approach. Graefes Arch Clin Exp Ophthalmol 253:999. CrossRefGoogle Scholar
  58. 58.
    Stanga PE, Jaberansari H, Bindra MS, Gil-Martinez M, Biswas S (2016) Transcleral drainage of subretinal fluid, anti-vascular endothelial growth factor, and wide-field imaging-guided laser in coats exudative retinal detachment. Retina 36:156–162. CrossRefGoogle Scholar
  59. 59.
    Karacorlu M, Hocaoglu M, Sayman MI, Arf S (2017) Long-term anatomical and functional outcomes following vitrectomy for advanced Coats disease. Retina 37:1757. CrossRefGoogle Scholar
  60. 60.
    Ogata M, Suzuki T, Nakagawa Y, Hayakawa K, Kawai K (2014) Post-vitrectomy observation of Coat’s disease associated with exudative retinal detachment, successfully treated with long-term silicone oil tamponade. Tokai J Exp Clin Med 39:25–28Google Scholar
  61. 61.
    Li AS, Capone A Jr, Trese MT, Sears JE, Kychenthal A, De la Huerta I et al (2018) Long-term outcomes of total exudative retinal detachments in stage 3B Coats disease. Ophthalmology 125:887–893. CrossRefGoogle Scholar
  62. 62.
    Imaizumi A, Kusaka S, Takaesu S, Sawaguchi S, Shimomura Y (2016) Subretinal fluid drainage and vitrectomy are helpful in diagnosing and treating eyes with advanced Coats’ disease. Case Rep Ophthalmol 7:223–229. CrossRefGoogle Scholar
  63. 63.
    Suesskind D, Altpeter E, Schrader M, Bartzschmidt KU, Aisenbrey S (2014) Pars plana vitrectomy for treatment of advanced Coats’ disease–presentation of a modified surgical technique and long-term follow-up. Graefes Arch Clin Exp Ophthalmol 252:873. CrossRefGoogle Scholar
  64. 64.
    Mino A, Mitamura Y, Katome T, Semba K, Egawa M, Naito T (2015) Case of adult-onset Coats’ disease with epiretinal membrane treated with 25-gauge pars plana vitrectomy. J Med Investig JMI 62:85–88. CrossRefGoogle Scholar
  65. 65.
    Ramasubramanian A, Shields CL (2012) Bevacizumab for Coats’ disease with exudative retinal detachment and risk of vitreoretinal traction. Br J Ophthalmol 96:356. CrossRefGoogle Scholar
  66. 66.
    Sun Y, Jain A, Moshfeghi DM (2007) Elevated vascular endothelial growth factor levels in Coats disease: rapid response to pegaptanib sodium. Graefes Arch Clin Exp Ophthalmol 245:1387–1388. CrossRefGoogle Scholar
  67. 67.
    He YG, Wang H, Zhao B, Lee J, Bahl D, Mccluskey J (2010) Elevated vascular endothelial growth factor level in Coats’ disease and possible therapeutic role of bevacizumab. Graefes Arch Clin Exp Ophthalmol 248:1519–1521. CrossRefGoogle Scholar
  68. 68.
    Kaul S, Uparkar M, Mody K, Walinjkar J, Kothari M, Natarajan S (2010) Intravitreal anti-vascular endothelial growth factor agents as an adjunct in the management of Coats’ disease in children. Indian J Ophthalmol 58:76–78. CrossRefGoogle Scholar
  69. 69.
    Giannakopoulos M, Drimtzias E, Panteli V, Vasilakis P, Gartaganis SP (2017) Intravitreal ranibizumab as an adjunctive treatment for Coats disease (6-year follow-up). Retin Cases Brief Rep 11:339–343. Google Scholar
  70. 70.
    Kam AW, Hui M, Cherepanoff S, Fung AT (2018) Rapid “epiretinal membrane” development following intravitreal bevacizumab for Coats’ disease. Am J Ophthalmol Case Rep 11:75–77. CrossRefGoogle Scholar
  71. 71.
    Villegas VM, Gold AS, Berrocal AM, Murray TG (2014) Advanced Coats’ disease treated with intravitreal bevacizumab combined with laser vascular ablation. Clin Ophthalmol 8:973–976. Google Scholar
  72. 72.
    Li S, Deng G, Liu J, Ma Y, Lu H (2017) The effects of a treatment combination of anti-VEGF injections, laser coagulation and cryotherapy on patients with type 3 Coat’s disease. BMC Ophthalmol 17:76. CrossRefGoogle Scholar
  73. 73.
    Lin CJ, Hwang JF, Chen YT, Chen SN (2010) The effect of intravitreal bevacizumab in the treatment of Coats’ disease in children. Retina 30:617–622. CrossRefGoogle Scholar
  74. 74.
    Lin CJ, Chen SN, Hwang JF, Yang CM (2013) Combination treatment of pediatric coats’ disease: a bicenter study in Taiwan. J Pediatr Ophthalmol Strabismus 50:356–362. CrossRefGoogle Scholar
  75. 75.
    Fiorentzis M, Stavridis E, Seitz B, Viestenz A (2015) Adjuvant anti-VEGF therapy in Coats’ disease. Ophthalmologe 112:451–454. CrossRefGoogle Scholar
  76. 76.
    Park S, Cho HJ, Lee DW, Kim CG, Kim JW (2015) Intravitreal bevacizumab injections combined with laser photocoagulation for adult-onset Coats’ disease. Graefe’s Arch Clin Exp Ophthalmol 254:1511–1517. CrossRefGoogle Scholar
  77. 77.
    Kodama A, Sugioka K, Kusaka S, Matsumoto C, Shimomura Y (2014) Combined treatment for Coats’ disease: retinal laser photocoagulation combined with intravitreal bevacizumab injection was effective in two cases. BMC Ophthalmol 14:36. CrossRefGoogle Scholar
  78. 78.
    Gaillard MC, Mataftsi A, Balmer A, Houghton S, Munier FL (2014) ranibizumab in the management of advanced Coats disease Stages 3B and 4: long-term outcomes. Retina 34:2275–2281. CrossRefGoogle Scholar
  79. 79.
    Shieh WS, Shah GK, Blinder KJ (2017) Coats’ disease-related macular edema treated with combined aflibercept and laser photocoagulation. Case Rep Ophthalmol Med 2017:2824874. Google Scholar
  80. 80.
    Yang Q, Wei W, Shi X, Yang L (2016) Successful use of intravitreal ranibizumab injection and combined treatment in the management of Coats’ disease. Acta Ophthalmol 94:401–406. CrossRefGoogle Scholar
  81. 81.
    Tamura H, Miyamoto K, Kiryu J, Miyahara S, Katsuta H, Hirose F et al (2005) Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest Ophthalmol Vis Sci 46:1440–1444. CrossRefGoogle Scholar
  82. 82.
    Sebastián MC, Roberto GP, Rosa DM, Cristina ML, Manuel DL (2012) Adult Coats’ disease successfully managed with the dexamethasone intravitreal implant (Ozurdex®) combined with retinal photocoagulation. Case Rep Ophthalmol 3:123–127. CrossRefGoogle Scholar
  83. 83.
    Bergstrom CS, Rd HG (2008) Combination intravitreal triamcinolone injection and cryotherapy for exudative retinal detachments in severe Coats disease. Retina 28:33–37. CrossRefGoogle Scholar
  84. 84.
    Othman IS, Moussa M, Bouhaimed M (2010) Management of lipid exudates in Coats disease by adjuvant intravitreal triamcinolone: effects and complications. Br J Ophthalmol 94:606–610. CrossRefGoogle Scholar
  85. 85.
    Osman SA, Can DH, Aylin Y (2013) Intravitreal dexamethasone implant (Ozurdex) in Coats’ disease. Case Rep Ophthalmol 4:122–128. CrossRefGoogle Scholar
  86. 86.
    Kumar K, Raj P, Chandnani N, Agarwal A (2018) Intravitreal dexamethasone implant with retinal photocoagulation for adult-onset Coats’ disease. Int Ophthalmol. Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyThe Second Hospital of Jilin UniversityChangchunChina

Personalised recommendations