Demonstration of anatomical development of the human macula within the first 5 years of life using handheld OCT

  • Talal AlabduljalilEmail author
  • Carol A. Westall
  • Arun Reginald
  • Sina Farsiu
  • Stephanie J. Chiu
  • Alec Arshavsky
  • Cynthia A. Toth
  • Wai-Ching Lam
Original Paper



To demonstrate the anatomical development of the human macula using handheld spectral domain optical coherence tomography (SD-OCT) during the first 5 years of life.


This study is a cross-sectional, observational case series. Thirty-five normal eyes of 35 full-term/late preterm infants and children under 5 years of age were included. Handheld SD-OCT was used to image the macula of each eye. The data were analyzed using the Duke OCT Retinal Analysis Program v17 software. Retinal thickness maps were generated for the total retinal thickness (TRT), the inner retinal layers thickness (IRL), and the photoreceptor layer thickness (PRL). Based on the early treatment diabetic retinopathy study macular map, average thickness measurements were taken at 4 circles centered on the fovea (diameter): the foveal center (0.5 mm), sector 1 (S1) (1 mm), sector 2 (S2) (3 mm), sector 3 (S3) (6 mm).


The median age at participation was 24 months (range 5–52 months). The TRT increased throughout the first 5 years of life, and this increase was statistically significant at the foveal center and S1 (p = 0.01, p = 0.016, respectively). The IRL did not show any significant change in thickness from birth and throughout the first 5 years of life. The PRL thickness showed thickening in the first 24 months of age at the foveal center and S1 which was statistically significant at S1 (p = 0.066, p = 0.016, respectively). Interestingly, this PRL thickness increase plateaus beyond 24 months of age. The photoreceptors inner segment/outer segment (IS/OS) band was identified as a distinct layer in all our subjects.


Our findings conform with the literature that the anatomical development of the macular IRL completes before 5 months of age and hence before the PRL. We also identify 24 months of age as an important developmental milestone for photoreceptors development in the human macula.


Human macula Macular development Handheld OCT Bioptigen OCT Photoreceptor development 



Authors acknowledge the University of Toronto, Ophthalmology research funds committee (ORFC) at the hospital of SickKids for their sponsorship, Cynthia VandenHoven for her help with imaging, Duke University team for the software analysis, and Xiuyan Zhao for the statistical analysis.


  1. 1.
    Hendrickson AE, Yuodelis C (1984) The morphological development of the human fovea. Ophthalmology 91(6):603–612CrossRefPubMedGoogle Scholar
  2. 2.
    Yuodelis C, Hendrickson A (1986) A qualitative and quantitative analysis of the human fovea during development. Vis Res 26(6):847–855CrossRefPubMedGoogle Scholar
  3. 3.
    Hendrickson A, Possin D, Vajzovic L, Toth CA (2012) Histologic development of the human fovea from midgestation to maturity. Am J Ophthalmol 154(5):767–78 e2CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chavala SH, Farsiu S, Maldonado R, Wallace DK, Freedman SF, Toth CA (2009) Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging. Ophthalmology 116(12):2448–2456CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee AC, Maldonado RS, Sarin N, O’Connell RV, Wallace DK, Freedman SF et al (2011) Macular features from spectral-domain optical coherence tomography as an adjunct to indirect ophthalmoscopy in retinopathy of prematurity. Retina 31(8):1470–1482CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Maldonado RS, O’Connell RV, Sarin N, Freedman SF, Wallace DK, Cotten CM et al (2011) Dynamics of human foveal development after premature birth. Ophthalmology 118(12):2315–2325CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cabrera MT, Maldonado RS, Toth CA, O’Connell RV, Chen BB, Chiu SJ et al (2012) Subfoveal fluid in healthy full-term newborns observed by handheld spectral-domain optical coherence tomography. Am J Ophthalmol 153(1):167–75 e3CrossRefPubMedGoogle Scholar
  8. 8.
    Vajzovic L, Hendrickson AE, O’Connell RV, Clark LA, Tran-Viet D, Possin D et al (2012) Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am J Ophthalmol 154(5):779–89 e2CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cabrera MT, O’Connell RV, Toth CA, Maldonado RS, Tran-Viet D, Allingham MJ et al (2013) Macular findings in healthy full-term Hispanic newborns observed by hand-held spectral-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging Retin 44(5):448–454CrossRefGoogle Scholar
  10. 10.
    Lee H, Purohit R, Patel A, Papageorgiou E, Sheth V, Maconachie G et al (2015) In vivo foveal development using optical coherence tomography. Investig Ophthalmol Vis Sci 56(8):4537–4545CrossRefGoogle Scholar
  11. 11.
    Huynh SC, Wang XY, Rochtchina E, Mitchell P (2006) Distribution of macular thickness by optical coherence tomography: findings from a population-based study of 6-year-old children. Investig Ophthalmol Vis Sci 47(6):2351–2357CrossRefGoogle Scholar
  12. 12.
    Huynh SC, Wang XY, Burlutsky G, Rochtchina E, Stapleton F, Mitchell P (2008) Retinal and optic disc findings in adolescence: a population-based OCT study. Investig Ophthalmol Vis Sci 49(10):4328–4335CrossRefGoogle Scholar
  13. 13.
    El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF (2009) Optical coherence tomography in the eyes of normal children. Arch Ophthalmol 127(1):50–58CrossRefPubMedGoogle Scholar
  14. 14.
    Eriksson U, Holmstrom G, Alm A, Larsson E (2009) A population-based study of macular thickness in full-term children assessed with Stratus OCT: normative data and repeatability. Acta Ophthalmol 87(7):741–745CrossRefPubMedGoogle Scholar
  15. 15.
    Yanni SE, Wang J, Chan M, Carroll J, Farsiu S, Leffler JN et al (2012) Foveal avascular zone and foveal pit formation after preterm birth. Br J Ophthalmol 96(7):961–966CrossRefPubMedGoogle Scholar
  16. 16.
    Vajzovic L, Rothman AL, Tran-Viet D, Cabrera MT, Freedman SF, Toth CA (2015) Delay in retinal photoreceptor development in very preterm compared to term infants. Investig Ophthalmol Vis Sci 56(2):908–913CrossRefGoogle Scholar
  17. 17.
    Linberg KA, Fisher SK (1990) A burst of differentiation in the outer posterior retina of the eleven-week human fetus: an ultrastructural study. Vis Neurosci 5(1):43–60CrossRefPubMedGoogle Scholar
  18. 18.
    Hendrickson A (1992) A morphological comparison of foveal development in man and monkey. Eye (Lond) 6(Pt 2):136–144CrossRefGoogle Scholar
  19. 19.
    Vinekar A, Avadhani K, Sivakumar M, Mahendradas P, Kurian M, Braganza S et al (2011) Understanding clinically undetected macular changes in early retinopathy of prematurity on spectral domain optical coherence tomography. Investig Ophthalmol Vis Sci 52(8):5183–5188CrossRefGoogle Scholar
  20. 20.
    Maldonado RS, O’Connell R, Ascher SB, Sarin N, Freedman SF, Wallace DK et al (2012) Spectral-domain optical coherence tomographic assessment of severity of cystoid macular edema in retinopathy of prematurity. Arch Ophthalmol 130(5):569–578CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dubis AM, Subramaniam CD, Godara P, Carroll J, Costakos DM (2013) Subclinical macular findings in infants screened for retinopathy of prematurity with spectral-domain optical coherence tomography. Ophthalmology 120(8):1665–1671CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31(8):1609–1619CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Oishi A, Otani A, Sasahara M, Kojima H, Nakamura H, Kurimoto M et al (2009) Photoreceptor integrity and visual acuity in cystoid macular oedema associated with retinitis pigmentosa. Eye (Lond) 23(6):1411–1416CrossRefGoogle Scholar
  24. 24.
    Sallo FB, Peto T, Egan C, Wolf-Schnurrbusch UE, Clemons TE, Gillies MC et al (2012) The IS/OS junction layer in the natural history of type 2 idiopathic macular telangiectasia. Investig Ophthalmol Vis Sci 53(12):7889–7895CrossRefGoogle Scholar
  25. 25.
    Testa F, Melillo P, Di Iorio V, Orrico A, Attanasio M, Rossi S et al (2014) Macular function and morphologic features in juvenile Stargardt disease: longitudinal study. Ophthalmology 121(12):2399–2405CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kiringoda R, Thurm AE, Hirschtritt ME, Koziol D, Wesley R, Swedo SE et al (2010) Risks of propofol sedation/anesthesia for imaging studies in pediatric research: eight years of experience in a clinical research center. Arch Pediatr Adolesc Med 164(6):554–560CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Maldonado RS, Izatt JA, Sarin N, Wallace DK, Freedman S, Cotten CM et al (2010) Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children. Investig Ophthalmol Vis Sci 51(5):2678–2685CrossRefGoogle Scholar
  28. 28.
    Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S (2010) Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express 18(18):19413–19428CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Provis JM, Hendrickson AE (2008) The foveal avascular region of developing human retina. Arch Ophthalmol 126(4):507–511CrossRefPubMedGoogle Scholar
  30. 30.
    Dubis AM, Costakos DM, Subramaniam CD, Godara P, Wirostko WJ, Carroll J et al (2012) Evaluation of normal human foveal development using optical coherence tomography and histologic examination. Arch Ophthalmol 130(10):1291–1300CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lujan BJ, Roorda A, Knighton RW, Carroll J (2011) Revealing Henle’s fiber layer using spectral domain optical coherence tomography. Investig Ophthalmol Vis Sci 52(3):1486–1492CrossRefGoogle Scholar
  32. 32.
    Carrasco-Zevallos O, Nankivil D, Keller B, Viehland C, Lujan BJ, Izatt JA (2015) Pupil tracking optical coherence tomography for precise control of pupil entry position. Biomed Opt Express 6(9):3405–3419CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.SickKids Hospital, Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoCanada
  2. 2.Vision and Image Processing (VIP) Laboratory, Departments of Ophthalmology and Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations