International Ophthalmology

, Volume 38, Issue 6, pp 2417–2426 | Cite as

Comparative analysis of mean retinal thickness measured using SD-OCT in normal young or old age and glaucomatous eyes

  • Jun Won Jang
  • Myung Won Lee
  • Kyong Jin ChoEmail author
Original Paper



To evaluate changes in macular thickness, ganglion cell layer/inner plexiform layer (GCL/IPL) thickness, and retinal nerve fiber layer (RNFL) thickness in normal eyes and glaucomatous eyes using spectral domain optical coherence tomography (SD-OCT).


We enrolled 89 eyes (all left eyes), including 45 (of 45 patients) eyes with glaucoma and 44 (of 44 patients) normal eyes. The data from macular measurements using spectral domain optical coherence tomography were analyzed according to groups divided by age and glaucoma status. The macular thickness analysis, GCL/IPL thickness, and RNFL thickness values determined by SD-OCT scans were compared among the groups.


Mean macular thickness decreased significantly with age or glaucoma. Mean GCL/IPL thickness decreased significantly in glaucomatous eyes in all sectors but did not decrease with age. Mean RNFL thickness, which was divided into four quadrants (superior, nasal, inferior, and temporal), decreased significantly in glaucomatous eyes at all quadrants and decreased in the temporal quadrant with age in non-glaucomatous eyes. No significant differences were detected between eyes with normal tension glaucoma (NTG) and primary open angle glaucoma (POAG) in all sectors of mean GCL/IPL thickness, RNFL thickness, and macular thickness.


No significant difference in mean thickness was detected between eyes with NTG and POAG. Some of the sectors of RNFL thickness decreased with age or glaucoma. GCL/IPL thickness, however, decreased in glaucomatous eyes but not with age. Therefore, GCL/IPL thickness is less influenced by age when monitoring patients with glaucoma or suspect glaucoma.


GCL/IPL thickness Macular thickness NTG POAG RNFL thickness 



This study was approved by the institutional review board of Dankook University Hospital, Korea and complied with the tenets of the Declaration of Helsinki.

Author’s contribution

JWJ, MWL collected the data, made the analysis and composed the manuscript. KJC designed the study, reviewed and approved the manuscript. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HI15C1524).

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.


  1. 1.
    Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911CrossRefGoogle Scholar
  2. 2.
    Knighton RW, Gregori G (2012) The shape of the ganglion cell plus inner plexiform layers of the normal human macula. Invest Ophthalmol Vis Sci 53:7412–7420CrossRefGoogle Scholar
  3. 3.
    Hood DC, Raza AS, de Moraes CG, Odel JG, Greenstein VC, Liebmann JM et al (2011) Initial arcuate defects within the central 10 degrees in glaucoma. Invest Ophthalmol Vis Sci 52:940–946CrossRefGoogle Scholar
  4. 4.
    Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G et al (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116(12):2305–2314CrossRefGoogle Scholar
  5. 5.
    Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N (2011) Three dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52(3):1412–1421CrossRefGoogle Scholar
  6. 6.
    Nakano N, Hangai M, Nakanishi H, Mori S, Nukada M, Kotera Y et al (2011) Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography. Ophthalmology 118(12):2414–2426CrossRefGoogle Scholar
  7. 7.
    Medeiros FA, Lisboa R, Weinreb RN, Liebmann JM, Girkin C, Zangwill LM (2013) Retinal ganglion cell count estimates associated with early development of visual field defects in glaucoma. Ophthalmology 120:736–744CrossRefGoogle Scholar
  8. 8.
    Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25CrossRefGoogle Scholar
  9. 9.
    Geitzenauer W, Kiss CG, Durbin MK, Abunto MT, Callan TM, Stetson PF et al (2010) Comparing retinal thickness measurements from Cirrus spectral domain- and Stratus time domain-optical coherence tomography. Retina 30:596–606CrossRefGoogle Scholar
  10. 10.
    Legarreta JE, Gregori G, Punjabi OS, Knighton RW, Lalwani GA, Puliafito CA (2008) Macular thickness measurements in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 39(Suppl):S43–S49PubMedGoogle Scholar
  11. 11.
    Kouros NM, Sara N, Nariman N, Cirineo N, Knipping S, Giaconi J et al (2013) Macular ganglion cell/Inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol 156(6):1297–1307CrossRefGoogle Scholar
  12. 12.
    Lin SC, Singh K, Jampel HD, Hodapp EA, Smith SD, Francis BA et al (2007) Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology 114:1937–1949CrossRefGoogle Scholar
  13. 13.
    Chen TC, Zeng A, Sun W, Mujat M, deBoer JF (2008) Spectral domain optical coherence tomography and glaucoma. Int Ophthalmol Clin 48:29–45CrossRefGoogle Scholar
  14. 14.
    Lu AT, Wang M, Varma R, Schuman JS, Greenfield DS, Smith SD et al (2008) Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology 115:1352–1357CrossRefGoogle Scholar
  15. 15.
    Leite MT, Rao HL, Zangwill LM, Weinreb RN, Medeiros FA (2011) Comparison of the diagnostic accuracies of the spectralis, cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology 118(7):1334–1339PubMedGoogle Scholar
  16. 16.
    Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464CrossRefGoogle Scholar
  17. 17.
    Kanamori A, Kakamura M, Escano MF, Seya R, Maeda H, Negi A (2003) Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 135:513–522CrossRefGoogle Scholar
  18. 18.
    Quigley HA, Pease ME (1996) Change in the optic disc and nerve fiber layer estimated with the glaucoma-scope in monkey eyes. J Glaucoma 5:106–116CrossRefGoogle Scholar
  19. 19.
    Mistlberger A, Liebmann JM, Greenfield DS, Pons ME, Hoh ST, Ishikawa H et al (1999) Heidelberg retina tomography and optical coherence tomography in normal, ocularhypertensive, and glaucomatous eyes. Ophthalmology 106:2027–2032CrossRefGoogle Scholar
  20. 20.
    Carpineto P, Ciancaglini M, Zuppardi E, Falconio G, Doronzo E, Mastropasqua L (2003) Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes. Ophthalmology 110:190–195CrossRefGoogle Scholar
  21. 21.
    Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP et al (1995) Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 113:586–596CrossRefGoogle Scholar
  22. 22.
    Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R et al (2003) Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–189CrossRefGoogle Scholar
  23. 23.
    Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A et al (2012) Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology 119:1151–1158CrossRefGoogle Scholar
  24. 24.
    Kotowski J, Folio LS, Wollstein G, Ishikawa H, Ling Y, Bilonick RA et al (2012) Glaucoma discrimination of segmented Cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol 96:1420–1425CrossRefGoogle Scholar
  25. 25.
    Takayama K, Hangai M, Durbin M, Nakano N, Morooka S, Akagi T et al (2012) A novel method to detect local ganglion cell loss in early glaucoma using spectral domain optical coherence tomography. Invest Ophthalmol VisSci 53:6904–6913CrossRefGoogle Scholar
  26. 26.
    Akashi A, Kanamori A, Nakamura M, Fujihara M, Yamada Y, Negi A (2013) Comparative assessment for the ability of Cirrus, RTVue and 3D-OCT to diagnose glaucoma. Invest Ophthalmol Vis Sci 54:4478–4484CrossRefGoogle Scholar
  27. 27.
    Jeoung JW, Choi YJ, Park KH, Kim DM (2013) Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:4422–4429CrossRefGoogle Scholar
  28. 28.
    Alasil T, Wang K, Keane PA, Lee H, Baniasadi N, de Boer JF et al (2013) Analysis of normal retinal nerve fiber layer thickness by age, sex, and race using spectral domain optical coherence tomography. J Glaucoma 22(7):532–541CrossRefGoogle Scholar
  29. 29.
    Feuer WJ, Budenz DL, Anderson DR, Cantor L, Greenfield DS, Savell J et al (2011) Topographic differences in the age-related changes in the retinal nerve fiber layer of normal eyes measured by Stratus optical coherence tomography. J Glaucoma 20:133–138CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Ophthalmology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
  2. 2.Department of Ophthalmology, College of MedicineDankook UniversityCheonan-CitySouth Korea

Personalised recommendations