International Ophthalmology

, Volume 38, Issue 6, pp 2403–2416 | Cite as

Classification and characterization of acute macular neuroretinopathy with spectral domain optical coherence tomography

  • Katerina Hufendiek
  • Maria-Andreea Gamulescu
  • Karsten Hufendiek
  • Horst Helbig
  • David Märker
Original Paper



To classify and characterize AMN lesions with SD-OCT during a follow-up as long as 5 years.


Retrospective study of 14 patients (18 eyes) with special focus on SD-OCT. We measured thickness of inner nuclear layer (INL), outer retinal layer (ONL), and hyperreflective band at baseline and during follow-up. AMN lesions were classified as type 1 and type 2.


Of 14 patients (six males, eight females, mean age 29.7 years), three patients (four eyes) had type 1 and nine (12 eyes) had type 2. Two patients did not meet the criteria for AMN type 1 or 2 and were therefore classified as new subtype of AMN. In all patients, statistically significant thinning of ONL and INL was observable. Mean ONL of all patients was 90.2 ± 7.81 and 72.3 ± 15.64 μm (p < 0.05) during follow-up; mean INL was 54.4 ± 10.71 and 37.5 ± 6.18 μm (p < 0.05) in the course. In the subgroup analysis in AMN type 2, the thinning of both ONL and INL was also statistically significant (mean ONL: 87.4 ± 6.02 and 71.6 ± 12.7 μm (p < 0.05); mean INL: 48.5 ± 5.04 and 38.5 ± 5.6 μm (p < 0.05)) in the course.


SD-OCT allows for classification, characterization, and further understanding of AMN lesions. Up to now, this is one of the largest AMN case series differentiating into different subtypes and following up for up to 5 years. Furthermore, we describe a new AMN subtype characterized by initially clinically visible yellowish parafoveal lesions, subtle pigmentary changes at late stage, lack of classic dark appearance on IR reflectance, involvement of RPE/Bruch’s complex, and disruption of ellipsoid zone and interdigitation zone. The patients suffered from a prolonged visual impairment and paracentral scotomata. We propose the term AMN type 3 or “paracentral acute outer maculopathy.”


AMN Classification Characterization SD-OCT Follow-up 


Compliance with ethical standards

Conflict of interest

No conflicts of interest to declare.


  1. 1.
    Bhavsar KV, Lin S, Rahimy E et al (2016) Acute macular neuroretinopathy: a comprehensive review of the literature. Surv Ophthalmol 61:538–565. doi: 10.1016/j.survophthal.2016.03.003 CrossRefPubMedGoogle Scholar
  2. 2.
    Turbeville SD, Cowan LD, Gass JDM (2003) Acute macular neuroretinopathy: a review of the literature. Surv Ophthalmol 48:1–11CrossRefGoogle Scholar
  3. 3.
    Bos PJ, Deutman AF (1975) Acute macular neuroretinopathy. Am J Ophthalmol 80:573–584CrossRefGoogle Scholar
  4. 4.
    Feigl B, Haas A (2000) Optical coherence tomography (OCT) in acute macular neuroretinopathy. Acta Ophthalmol Scand 78:714–716CrossRefGoogle Scholar
  5. 5.
    Vance SK, Spaide RF, Freund KB et al (2011) Outer retinal abnormalities in acute macular neuroretinopathy. Retina Phila Pa 31:441–445. doi: 10.1097/IAE.0b013e3181fe54fa CrossRefGoogle Scholar
  6. 6.
    Hughes EH, Siow Y-C, Hunyor AP (2009) Acute macular neuroretinopathy: anatomic localisation of the lesion with high-resolution OCT. Eye Lond Engl 23:2132–2134. doi: 10.1038/eye.2008.430 CrossRefGoogle Scholar
  7. 7.
    Fawzi AA, Pappuru RR, Sarraf D et al (2012) Acute macular neuroretinopathy: long-term insights revealed by multimodal imaging. Retina Phila Pa 32:1500–1513. doi: 10.1097/IAE.0b013e318263d0c3 CrossRefGoogle Scholar
  8. 8.
    Sarraf D, Rahimy E, Fawzi AA et al (2013) Paracentral acute middle maculopathy: a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia. JAMA Ophthalmol 131:1275–1287. doi: 10.1001/jamaophthalmol.2013.4056 CrossRefPubMedGoogle Scholar
  9. 9.
    Holladay JT (2004) Visual acuity measurements. J Cataract Refract Surg 30:287–290. doi: 10.1016/j.jcrs.2004.01.014 CrossRefPubMedGoogle Scholar
  10. 10.
    Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20:175–208CrossRefGoogle Scholar
  11. 11.
    Joussen AM, Gardner TW, Kirchhof B, Ryan SJ (eds) (2007) Retinal vascular disease. Springer, Berlin, pp 24–37CrossRefGoogle Scholar
  12. 12.
    Yanoff M, Duker IS (eds) (2004) Ophthalmology, 2nd edn. Mosby, St. Louis, pp 779–782Google Scholar
  13. 13.
    Kerrison JB, Pollock SC, Biousse V, Newman NJ (2000) Coffee and doughnut maculopathy: a cause of acute central ring scotomas. Br J Ophthalmol 84:158–164CrossRefGoogle Scholar
  14. 14.
    Justice J, Lehmann RP (1976) Cilioretinal arteries. A study based on review of stereo fundus photographs and fluorescein angiographic findings. Arch Ophthalmol 94(8):1355–1358CrossRefGoogle Scholar
  15. 15.
    Nipken LH, Schmidt D (1996) Incidence, localization, length and course of the cilioretinal artery. Is there an effect on the course of temporal rental arteries? Klin Monatsbl Augenheilkd 208:229–234. doi: 10.1055/s-2008-1035201 CrossRefPubMedGoogle Scholar
  16. 16.
    Groat CL, Ellis BD, Leys MJ (2016) A unique case of acute macular neuroretinopathy associated with cotton wool spots and intraretinal fluid. Retin Cases Brief Rep 10:26–31. doi: 10.1097/ICB.0000000000000154 CrossRefPubMedGoogle Scholar
  17. 17.
    Nemiroff J, Kuehlewein L, Rahimy E et al (2016) Assessing deep retinal capillary ischemia in paracentral acute middle maculopathy by optical coherence tomography angiography. Am J Ophthalmol 162(121–132):e1. doi: 10.1016/j.ajo.2015.10.026 CrossRefGoogle Scholar
  18. 18.
    Pecen PE, Smith AG, Ehlers JP (2015) Optical coherence tomography angiography of acute macular neuroretinopathy and paracentral acute middle maculopathy. JAMA Ophthalmol 133:1478–1480. doi: 10.1001/jamaophthalmol.2015.4100 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gibbs D, Cideciyan AV, Jacobson SG, Williams DS (2009) Retinal pigment epithelium defects in humans and mice with mutations in MYO7A: imaging melanosome-specific autofluorescence. Invest Ophthalmol Vis Sci 50:4386–4393. doi: 10.1167/iovs.09-3471 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Duncker T, Marsiglia M, Lee W et al (2014) Correlations among near-infrared and short-wavelength autofluorescence and spectral-domain optical coherence tomography in recessive Stargardt disease. Invest Ophthalmol Vis Sci 55:8134–8143. doi: 10.1167/iovs.14-14848 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rakoczy P, Kennedy C, Thompson-Wallis D et al (1992) Changes in retinal pigment epithelial cell autofluorescence and protein expression associated with phagocytosis of rod outer segments in vitro. Biol Cell 76:49–54CrossRefGoogle Scholar
  22. 22.
    Vallabh NA, Sahni JN, Parkes CK et al (2016) Near-infrared reflectance and autofluorescence imaging characteristics of choroidal nevi. Eye Lond Engl 30:1593–1597. doi: 10.1038/eye.2016.183 CrossRefGoogle Scholar
  23. 23.
    Cideciyan AV, Swider M, Jacobson SG (2015) Autofluorescence imaging with near-infrared excitation: normalization by reflectance to reduce signal from choroidal fluorophores. Invest Ophthalmol Vis Sci 56:3393–3406. doi: 10.1167/iovs.15-16726 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Katerina Hufendiek
    • 1
    • 2
  • Maria-Andreea Gamulescu
    • 1
  • Karsten Hufendiek
    • 1
    • 2
  • Horst Helbig
    • 1
  • David Märker
    • 1
  1. 1.Department of OphthalmologyUniversity Medical Center RegensburgRegensburgGermany
  2. 2.University Eye HospitalHannover Medical SchoolHannoverGermany

Personalised recommendations