International Ophthalmology

, Volume 38, Issue 6, pp 2635–2638 | Cite as

Early epithelial complications of accelerated trans-epithelial corneal crosslinking in treatment of keratoconus: a case series

  • Sharon S. W. Chow
  • Tommy C. Y. Chan
  • Ian Y. H. Wong
  • Michelle C. Y. Fan
  • Jimmy S. M. Lai
  • Alex L. K. NgEmail author
Case Report



To report a case series of early postoperative complications following combined accelerated corneal crosslinking (CXL) and trans-epithelial technique in keratoconus.

Case presentations

Eleven eyes underwent accelerated trans-epithelial CXL (18 mW/cm2 for 5 min). Seven eyes (64%) developed complications in the first week postoperatively. Five eyes had large epithelial defects, and two eyes were complicated with diffuse punctate epithelial erosions. Early transient stromal haze was seen in eyes with epithelial complications. Anterior segment optical coherence tomography showed a faint demarcation line in six eyes (55%) with epithelial complications.


A significant number of eyes developed epithelial complications shortly after combined accelerated trans-epithelial CXL, which defeated the benefits of leaving the epithelium intact.


Keratoconus Corneal collagen crosslinking Accelerated crosslinking Trans-epithelial crosslinking 


Compliance with ethical standards

Conflict of interest

All authors have no conflict of interest.

Ethical Approval

For this type of retrospective study, formal consent is not required.


  1. 1.
    Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135(5):620–627CrossRefGoogle Scholar
  2. 2.
    Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A (2009) Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg 35(5):893–899CrossRefGoogle Scholar
  3. 3.
    Wittig-Silva C, Chan E, Islam FM, Wu T, Whiting M, Snibson GR (2014) A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology 121(4):812–821CrossRefGoogle Scholar
  4. 4.
    Hashemian H, Jabbarvand M, Khodaparast M, Ameli K (2014) Evaluation of corneal changes after conventional versus accelerated corneal cross-linking: a randomized controlled trial. J Refract Surg 30(12):837–842CrossRefGoogle Scholar
  5. 5.
    Lombardo M, Pucci G, Barberi R, Lombardo G (2015) Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking. J Cataract Refract Surg 41(2):446–459CrossRefGoogle Scholar
  6. 6.
    Koller T, Mrochen M, Seiler T (2009) Complication and failure rates after corneal crosslinking. J Cataract Refract Surg 35(8):1358–1362CrossRefGoogle Scholar
  7. 7.
    Leccisotti A, Islam T (2010) Transepithelial corneal collagen cross-linking in keratoconus. J Refract Surg 26(12):942–948CrossRefGoogle Scholar
  8. 8.
    Filippello M, Stagni E, O’Brart D (2012) Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg 38(2):283–291CrossRefGoogle Scholar
  9. 9.
    Yuksel E, Novruzlu S, Ozmen MC, Bilgihan K (2015) A study comparing standard and transepithelial collagen cross-linking riboflavin solutions: epithelial findings and pain scores. J Ocul Pharmacol Ther 31(5):296–302CrossRefGoogle Scholar
  10. 10.
    Taneri S, Oehler S, Lytle G, Dick HB (2014) Evaluation of epithelial integrity with various transepithelial corneal cross-linking protocols for treatment of keratoconus. J Ophthalmol 2014:614380PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wu MF, Stachon T, Wang J, Song X, Colanesi S, Seitz B et al (2015) Effect of keratocyte supernatant on epithelial cell migration and proliferation after corneal crosslinking (CXL). Curr Eye Res 41:466–473. doi: 10.3109/02713683.2015.1050739 CrossRefPubMedGoogle Scholar
  12. 12.
    Mazzotta C, Hafezi F, Kymionis G, Caragiuli S, Jacob S, Traversi C et al (2015) In vivo confocal microscopy after corneal collagen crosslinking. Ocul Surf 13(4):298–314CrossRefGoogle Scholar
  13. 13.
    Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Paradiso AL (2012) Transepithelial corneal collagen crosslinking for keratoconus: qualitative investigation by in vivo HRT II confocal analysis. Eur J Ophthalmol 22(Suppl 7):S81–S88CrossRefGoogle Scholar
  14. 14.
    Ng AL, Chan TC, Lai JS, Cheng AC (2015) Comparison of the central and peripheral corneal stromal demarcation line depth in conventional versus accelerated collagen cross-linking. Cornea 34(11):1432–1436CrossRefGoogle Scholar
  15. 15.
    Wollensak G, Iomdina E (2009) Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg 35(3):540–546CrossRefGoogle Scholar
  16. 16.
    Soeters N, Wisse RP, Godefrooij DA, Imhof SM, Tahzib NG (2015) Transepithelial versus epithelium-off corneal cross-linking for the treatment of progressive keratoconus: a randomized controlled trial. Am J Ophthalmol 159(5):821–823CrossRefGoogle Scholar
  17. 17.
    Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F (2013) The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Trans Vis Sci Technol 2(7):6CrossRefGoogle Scholar
  18. 18.
    Gatzioufas Z, Raiskup F, O’Brart D, Spoerl E, Panos GD, Hafezi F (2016) Transepithelial corneal cross-linking using an enhanced riboflavin solution. J Refract Surg 32(6):372–377CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sharon S. W. Chow
    • 1
  • Tommy C. Y. Chan
    • 2
  • Ian Y. H. Wong
    • 3
  • Michelle C. Y. Fan
    • 1
  • Jimmy S. M. Lai
    • 3
  • Alex L. K. Ng
    • 3
    Email author
  1. 1.Department of OphthalmologyGrantham HospitalHong KongHong Kong, SAR
  2. 2.Department of Ophthalmology and Visual SciencesChinese University of Hong KongShatinHong Kong, SAR
  3. 3.Department of OphthalmologyThe University of Hong KongHong KongHong Kong, SAR

Personalised recommendations