Advertisement

International Ophthalmology

, Volume 38, Issue 5, pp 2127–2132 | Cite as

Electron microscopic evaluation of anterior lens epithelium in patients with idiopathic congenital cataract

  • Kemal Tekin
  • Yasemin Ozdamar Erol
  • Merve Inanc
  • Mustafa Fevzi Sargon
  • Cigdem Ulku Can
  • Sibel Polat
  • Pelin Yilmazbas
Original Paper

Abstract

Purpose

To investigate the ultrastructure of the lens epithelial cells (LECs) in patients with idiopathic congenital cataract.

Methods

This is a prospective interventional study. The anterior lens capsules (aLC: basement membrane and associated LECs) were taken from 16 eyes of 12 consecutive patients who were diagnosed as having idiopathic congenital cataracts. The aLCs were obtained from cataract surgery and prepared for transmission electron microscopy (TEM).

Results

Some significant ultrastructural changes were observed in all aLCs of the participants. The anterior LECs showed alterations in different areas which were partly cuboidal and partly squamous in shape. The LECs had euchromatic nucleus and included some vacuoles in the cytoplasms as a remarkable alteration. The sizes of these intraepithelial cell vacuoles were changeable.

Conclusions

We identified remarkable changes in LECs of the eyes with idiopathic congenital cataract by TEM. It can be assumed that oxidative damage may be associated with these ultrastructural changes in LECs of the eyes with idiopathic congenital cataracts.

Keywords

Congenital cataract Lens epithelium Transmission electron microscopy Ultrastructural analysis 

Notes

Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Chan WH, Biswas S, Ashworth JL, Lyold IC (2012) Congenital and infantile cataract: aetiology and management. Eur J Pediatr 171:625–630CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Prado RB, Silva VF, Schellini SA, Rodrigues AC (2016) Congenital and development cataract: axial length and keratometry study in Brazilian children. Arq Bras Ophthalmol 79:19–23Google Scholar
  3. 3.
    Zetterström C, Lundvall A, Kugelberg M (2005) Cataracts in children. J Cataract Refract Surg 31:824–840CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Vasavada AR, Nihalani BR (2006) Pediatric cataract surgery. Curr Opin Ophthalmol 17:54–61PubMedPubMedCentralGoogle Scholar
  5. 5.
    Michael R, Bron AJ (2011) The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci 366:1278–1292CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Spector A (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J 9:1173–1182CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Truscott RJ (2005) Age-related nuclear cataract-oxidation is the key. Exp Eye Res 80:709–725CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Straatsma BR, Lightfoot DO, Barke RM, Horwitz J (1991) Lens capsule and epithelium in age-related cataract. Am J Ophthalmol 112:283–296CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Joo CK, Lee EH, Kim JC, Kim YH, Lee JH, Kim JT, Chung KH, Kim J (1999) Degeneration and trans differentiation of human lens epithelial cells in nuclear and anterior polar cataracts. J Cataract Refract Surg 25:652–658CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Charakidas A, Kalogeraki A, Tsilimbaris M, Koukoulomatis P, Brouzas D, Delides G (2005) Lens epithelial apoptosis and cell proliferation in human age-related cortical cataract. Eur J Ophthalmol 15:213–220CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Danysh BP, Duncan MK (2009) The lens capsule. Exp Eye Res 88:151–164CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Krag S, Andreassen TT (2003) Mechanical properties of the human lens capsule. Prog Retin Eye Res 22:749–767CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Parmigiani CM, McAvoy JW (1991) The roles of laminin and fibronectin in the development of the lens capsule. Curr Eye Res 10:501–511CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bhat SP (2001) The ocular lens epithelium. Biosci Rep 21:537–563CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Andjelic S, Drašlar K, Hvala A, Lopic N, Strancar J, Hawlina M (2016) Anterior lens epithelial cells attachment to the basal lamina. Acta Ophthalmol 94:183–188CrossRefGoogle Scholar
  16. 16.
    Meyer LM, Wegener AR, Holz FG, Kronschläger M, Bergmanson JP, Soderberg PG (2014) Ultrastructure of UVR-B-induced cataract and repair visualized with electron microscopy. Acta Ophthalmol 92:635–643CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Synder A, Omulecka A, Ratynska M, Omulecki W (2002) A study of human lens epithelial cells by light and electron microscopy and by immunohistochemistry in different types of cataracts. Klin Oczna 104:369–373PubMedPubMedCentralGoogle Scholar
  18. 18.
    Bleckmann H, Khodadadyan C, Schnoy N (1989) Light and electron microscopy of the human, anterior cataract capsule. Fortschr Ophthalmol 86:556–560PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sargon MF, Celik HH, Orhan M (1997) Electron microscopy of the senile changes in lens epithelium. Okajimas Folia Anat Jpn 74:75–79CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Vasavada AR, Cherian M, Yadav S, Rawal UM (1991) Lens epithelial cell density and histomorphological study in cataractous lenses. J Cataract Refract Surg 17:798–804CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Andjelic S, Drašlar K, Hvala A, Hawlina M (2016) Anterior lens epithelium in intumescent white cataracts- scanning and transmission electron microscopy study. Graefes Arch Clin Exp Ophthalmol 254:269–276CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Andjelic S, Draslar K, Hvala A, Hawlina M (2017) Anterior lens epithelium in cataract patients with retinitis pigmentosa—scanning and transmission electron microscopy study. Acta Ophthalmol 95:212–220CrossRefGoogle Scholar
  23. 23.
    Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hammond BR, Johnson BA, George ER (2014) Oxidative photodegradation of ocular tissues: beneficial effects of filtering and exogenous antioxidants. Exp Eye Res 129:135–150CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Cheng HM, Fagerholm P, Chylack LT Jr. (1983) Response of the lens to oxidative-osmotic stress. Exp Eye Res 37:11–21CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016:3164734CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Berthoud VM, Beyer EC (2009) Oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal 11:339–353CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Khurana AK (2007) Diseases of the lens, comprehensive ophthalmology, 4th edn. New Age International (P) Ltd, New Delhi, pp 167–204Google Scholar
  29. 29.
    Haargard B, Wohlfahrt J, Fledelius HC, Rosenberg T, Melbye M (2004) A nationwide Danish study of 1027 cases of congenital/infantile cataracts: etiological and clinical classifications. Ophthalmology 111:2292–2298CrossRefGoogle Scholar
  30. 30.
    Gupta VB, Rajagopala M, Ravishankar B (2014) Etiopathogenesis of cataract: an appraisal. Indian J Ophthalmol 62:103–110CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Prakalapakom SG, Rasmussen SA, Lambert SR, Honein MA, National Birth Defects Prevention Study (2010) Assessment of risk factors for infantile cataracts using a case-control study: National Birth Defects Prevention Study, 2000–2004. Ophthalmology 117:1500–1505CrossRefGoogle Scholar
  32. 32.
    Lloyd IC, Goss-Sampson M, Jeffrey BG, Kriss A, Russell-Eggitt I, Taylor D (1992) Neonatal cataract: aetiology, pathogenesis and management. Eye (Lond) 6:184–196CrossRefGoogle Scholar
  33. 33.
    Stunf S, Hvala A, Vidovič Valentinčič N, Kraut A, Hawlina M (2012) Ultrastructure of the anterior lens capsule and epithelium in cataracts associated with uveitis. Ophthalmic Res 48:12–21CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Ankara Ulucanlar Eye Training and Research HospitalAnkaraTurkey
  2. 2.Hacettepe University Faculty of MedicineAnkaraTurkey

Personalised recommendations