International Ophthalmology

, Volume 38, Issue 5, pp 2089–2100 | Cite as

Efficacy and safety of extemporaneously prepared miconazole eye drops in Candida albicans-induced keratomycosis

  • Linda Gyanfosu
  • George Asumeng KoffuorEmail author
  • Samuel Kyei
  • Ben Ababio-Danso
  • Kwabena Peprah-Donkor
  • Wilson Bright Nyansah
  • Frederick Asare
Original Paper



Extemporaneously prepared miconazole eye drops (EPMD) are used by some eye care practitioners to manage keratomycosis in Ghana. This study therefore aimed to determine the efficacy and safety of EPMD using in vitro and in vivo experimental models.


The minimum inhibitory concentration (MIC) of EPMD was determined by the agar-well diffusion method. In vivo, the activity of EPMD on corneal ulcer, neovascularization, clouding, edema, carring and on keratomycotic conjunctivitis and corneal scarring (clinical features) associated with Candida albicans-induced keratomycosis in rabbits was determined by treating them with 0.034–1.08% (weight-in-volume) EPMD for a period of 30 days. The safety of EPMD on the healthy eye was determined by instilling various concentrations into the intact eye of the rabbits.


The MIC of EPMD on Candida albicans was 1.08% (zone of inhibition of 13 mm ± 0.578), which resulted in significantly better improvements (p ≤ 0.001) in clinical findings than eyes treated with sterile water (p > 0.05), and showed no significant difference (p > 0.05) compared to eyes treated with 0.3% fluconazole. There were no visible signs of ocular toxicity on instilling it into healthy eyes of rabbits.


The extemporaneously prepared miconazole eye drops are effective and safe to use in keratomycosis.


Minimum inhibitory concentration Corneal neovascularization Oculomycosis Corneal edema Corneal ulcer Fluconazole 



This study was funded solely by the authors.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest whatsoever.

Ethical approval

All activities performed during the studies conformed to accepted principles for laboratory animal use and care (EU directive of 1986: 86/609/EEC) and the Association for Research in Vision and Ophthalmology Statement for Use of Animals in Ophthalmic and Vision Research. Institutional guidelines regarding animal experimentation in Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, were followed. Biosafety guidelines for protection of personnel in the laboratory were observed. The project was approved by the animal research review committee of the pharmacology laboratory at the Faculty of Pharmacy and Pharmaceutical Sciences, KNUST (Ethics Reference No: FPPS/PCOL/011/2013).


  1. 1.
    Mravičić I, Dekaris I, Gabrić N, Romac I, Glavota V, Mlinarić- Missoni E (2012) An overview of fungal keratitis and case report on trichophyton keratitis. In: Srinivasan M (ed) Keratitis, In Tech, Croatia. doi:  10.5772/33695 Google Scholar
  2. 2.
    Ansari Z, Miller D, Galor A (2013) Current thoughts in fungal keratitis: diagnosis and treatment. Curr Fungal Infect Rep 7(3):209–218. doi: 10.1007/s12281-013-0150-110.1007/s12281-013-0150-1 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Srinivasan R, Kanungo R, Goyal JL (1991) Spectrum of oculomycosis in South India. Acta Ophthalmol (Copenh) 69(6):744–749 PMID: 1789089 CrossRefGoogle Scholar
  4. 4.
    Thomas PA, Kaliamurthy J (2013) Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect 19(3):210–220. doi: 10.1111/1469-0691.12126 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nayak N (2008) Fungal infections of the eye: laboratory diagnosis and treatment. Nepal Med Coll J 10(1):48–63 PMID: 18700633 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Thomas PA (2003) Review on current perspectives on ophthalmic mycoses. Clin Microbiol Rev 16(4):730–797. doi: 10.1128/CMR.16.4.730-797.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Keay JL, Gower EW, Iovieno A et al (2011) Clinical and microbiological characteristics of fungal keratitis in the United States, 2001–2007: a multicenter study. Ophthalmology 118(5):920–926. doi: 10.1016/j.ophtha.2010.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Thushanthi R, Marios C, Vishal J, Rasik V (2013) Factors affecting treatment outcomes with voriconazole in cases with fungal keratitis. Cornea 32(4):445–449. doi: 10.1097/ICO.0b013e318254a41b CrossRefGoogle Scholar
  9. 9.
    Gyanfosu L, Koffuor GA, Abokyi S, Abruquah AA, Eze FI (2016) Availability of antifungal eye drops in hospital and private retail pharmacies: a survey conducted in Kumasi, Ghana. Int J Commun Med Public Health 3(11):3045–3050CrossRefGoogle Scholar
  10. 10.
    Fayemiwo SA, Ogunleye VO, Ashaye AO, Oladele R, Alli AJ, Bakare RA (2013) Causative agents of keratomycosis in Ibadan: review of laboratory reports. Afr J Clin Exp Microbiol 14(2):105–108. doi: 10.4314/ajcem.v14i2.11 CrossRefGoogle Scholar
  11. 11.
    Islam MA, Alam MM, Choudhury ME, Kobayashi N, Ahmed MU (2008) Determination of minimum inhibitory concentration (MIC) of Cloxacillin for selected isolates of Methicillin-resistant staphylococcus aureus (MRSA) with their antibiogram. Bangladesh J Vet Med 6(1):121–126. doi: 10.3329/bjvm.v6i1.1350 CrossRefGoogle Scholar
  12. 12.
    Behrens-Baumann W, Klinge B, Rűchel R (1990) Topical fluconazole for experimental candida keratitis in rabbits. Br J Ophthalmol 74(1):40–42 PMID: 2306443 CrossRefPubMedCentralGoogle Scholar
  13. 13.
    O’Day DM (1985) Studies in experimental keratomycosis. Curr Eye Res 4(3):243–252CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Sudan R, Sharma YR (2003) Keratomycosis: clinical diagnosis, medical and surgical treatment. JK Sci 5(1):3–10Google Scholar
  15. 15.
    Kaye SB, Rao PG, Smith G, Scott JA et al (2003) Simplifying collection of corneal specimens in cases of suspected bacterial keratitis. J Clin Microbiol 41(7):3192–3197. doi: 10.1128/JCM.41.7.3192-3197.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wu TG, Wilhelmus KR, Mitchell BM (2003) Experimental keratomycosis in a mouse model. Invest Ophthalmol Vis Sci 44(1):210–216 PMID: 12506077 CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bhattacharya D, Ning Y, Zhao F, Stevenson W, Chen R, Zhang J, Wang M (2015) Tear production after bilateral main lacrimal gland resection in rabbits. Invest Opthalmol Vis Sci 56(13):7774–7783. doi: 10.1167/iovs.15-17550 CrossRefGoogle Scholar
  18. 18.
    Fitzsimons R, Peters AL (1986) Miconazole and ketoconazole as satisfactory first-line treatment for keratomycosis. Am J Ophthalmol 101(5):605–608 PMID: 3706466 CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(suppl 1):5–16. doi: 10.1093/jac/48.suppl_1.5 CrossRefGoogle Scholar
  20. 20.
    Schreiber W, Olbrisch A, Vorwerk CK, König W, Behrens-Baumann W (2003) Combined topical fluconazole and corticosteroid treatment for experimental Candida albicans keratomycosis. Invest Ophthalmol Vis Sci 44(6):2634–2643 PMID: 12766067 CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D (2010) Liposomes as an ocular delivery system of fluconazole: in vitro studies. Acta Ophthalmol 88(8):901–904. doi: 10.1111/j.1755-3768.2009.01584.x CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13(1):122–143 PMID: 10627494 CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9(7):327–335 PMID: 11435107 CrossRefGoogle Scholar
  24. 24.
    De Bernardis F, Sullivan PA, Cassone A (2001) Aspartyl proteinases of Candida albicans and their role in pathogenicity. Med Mycol 39(4):303–313 PMID: 11556759 CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Klintworth GK, Burger PC (1983) Neovascularization of the cornea: current concepts of its pathogenesis. Int Ophthalmol Clin 23(1):27–39 PMID: 6186626 CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Agrawal PK (1983) The pathology of cornea (A histopathological study). Indian J Ophthalmol 31(5):662–665 PMID: 6671788 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sawyer PR, Brogden RN, Pinder RM, Speight TM, Avery GS (1975) Miconazole: a review of its antifungal activity and therapeutic efficacy. Drugs 9(6):406–423 PMID: 1149649 CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Thevissen K, Ayscough KR, Aerts AM, Du W, De Brucker K, Meert EM (2007) Miconazole induces changes in actin cytoskeleton prior to reactive oxygen species induction in yeast. J Biol Chem 282(30):21592–21597. doi: 10.1074/jbc.M608505200 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kobayashi D, Kondo K, Uehara N, Otokozawa S, Tsuji N, Yagihashi A, Watanabe N (2002) Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother 46(10):3113–3117 PMID: 12234832 CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Foster CS, Stefanyszyn M (1979) Intraocular penetration of miconazole in rabbits. Arch Ophthalmol 97(9):1703–1706 PMID: 475641 CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Mun EA, Morrison PWJ, Williams AC, Khutoryanskiy VV (2014) On the barrier properties of the cornea: a microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein. Mol Pharm 11(10):3556–3564. doi: 10.1021/mp500332m CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Whitson JT, Cavanagh HD, Lakshman N, Petroll WM (2006) Assessment of corneal epithelial integrity after acute exposure to ocular hypotensive agents preserved with and without benzalkonium chloride. Adv Ther 23(5):663–671CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kaur IP, Rana C, Singh H (2008) Development of effective ocular preparations of antifungal agents. J Ocul Pharmacol Ther 24(5):481–493. doi: 10.1089/jop.2008.0031 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Qu L, Li L, Xie H (2010) Corneal and aqueous humor concentrations of amphotericin B using three different routes of administration in a rabbit model. Ophthalmic Res 43(3):153–158. doi: 10.1159/000254566 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Neoh CF, Leung L, Vajpayee RB, Stewart K, Kong DCM (2011) Treatment of alternaria keratitis with intrastromal and topical caspofungin in combination with intrastromal, topical, and oral Voriconazole. Ann Pharmacother 45:e24. doi: 10.1345/aph.1P586 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Linda Gyanfosu
    • 1
    • 2
  • George Asumeng Koffuor
    • 1
    Email author
  • Samuel Kyei
    • 3
  • Ben Ababio-Danso
    • 2
  • Kwabena Peprah-Donkor
    • 1
  • Wilson Bright Nyansah
    • 1
  • Frederick Asare
    • 1
  1. 1.Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
  2. 2.St. Michael’s Catholic HospitalPramso, Bosomtwe DistrictGhana
  3. 3.Department of Optometry, School of Allied Health SciencesUniversity of Cape CoastCape CoastGhana

Personalised recommendations