Advertisement

International Ophthalmology

, Volume 38, Issue 5, pp 1955–1961 | Cite as

Evaluation of optic disc, retinal nerve fiber and macular ganglion cell layers in pediatric diabetes

  • Evre Pekel
  • Selda Ayça Altıncık
  • Gökhan Pekel
Original Paper

Abstract

Purpose

Our aim was to compare optic disc parameters, retinal nerve fiber (RNFL) and macular ganglion cell layers between children and adolescents with diabetes mellitus (type 1) and healthy controls.

Methods

Sixty-three eyes of 63 pediatric diabetic patients without diabetic retinopathy and 44 eyes of 44 healthy controls were included in this cross-sectional and comparative study. Diabetic and control groups were similar in the aspect of age, gender and refractive error. Measurements of optic disc parameters (i.e., rim area, disc area, cup-to-disc ratio, cup volume), thickness of RNFL and macular ganglion cell—inner plexiform layers (GCL + IPL) were taken with the spectral domain optical coherence tomography.

Results

There were not statistically significant differences between the diabetic patients and healthy controls in terms of intraocular pressure (p = 0.14), retinal nerve fiber layer thickness (p = 0.61), rim area (p = 0.92), disc area (p = 0.10), vertical cup-to-disc ratio (p = 0.16), cup volume (p = 0.13), and average macular GCL + IPL thickness (p = 0.43). On the other hand, binocular RNFL thickness symmetry percentage was statistically significantly different in the diabetic and control groups (p = 0.01).

Conclusion

Diabetic children and adolescents without diabetic retinopathy have more binocular RNFL thickness asymmetry compared to healthy controls.

Keywords

Diabetes mellitus Optic disc Retinal nerve fiber layer Macular ganglion cell layer 

Notes

Compliance with ethical standards

Conflict of interest

Evre Pekel declares that she has no conflict of interest. Selda Ayça Altıncık declares that she has no conflict of interest. Gökhan Pekel declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Fong DS, Ferris FL 3rd, Davis MD, Chew EY (1999) Causes of severe visual loss in the early treatment diabetic retinopathy study: eTDRS report no. 24. Early treatment diabetic retinopathy study research group. Am J Ophthalmol 127:137–141CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sayin N, Kara N, Pekel G (2015) Ocular complications of diabetes mellitus. World J Diabetes 6:92–108CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35:556–564CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Tan W, Wright T, Rajendran D, Garcia-Sanchez Y, Finkelberg L, Kisilak M et al (2015) Cone-photoreceptor density in adolescents with type 1 diabetes. Invest Ophthalmol Vis Sci 56:6339–6343CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chen Y, Li J, Yan Y, Shen X (2016) Diabetic macular morphology changes may occur in the early stage of diabetes. BMC Ophthalmol 16:12CrossRefPubMedCentralGoogle Scholar
  6. 6.
    van Dijk HW, Verbraak FD, Kok PH, Garvin MK, Sonka M, Lee K et al (2010) Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci 51:3660–3665CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Peng PH, Lin HS, Lin S (2009) Nerve fibre layer thinning in patients with preclinical retinopathy. Can J Ophthalmol 44:417–422CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Elgin U, Cankaya B, Simsek T, Batman A (2010) Comparison of optic disc topography in non-glaucomatous eyes of children with juvenile diabetes mellitus and normal children. J Pediatr Ophthalmol Strabismus 47:313–316CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Mwanza JC, Durbin MK, Budenz DL, Cirrus OCT Normative Database Study Group (2011) Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the cirrus HD-OCT in healthy eyes. Am J Ophthalmol 151:514–521CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Olcaysu OO, Cayir A, Olcaysu E, Kara M, Erdil A (2015) Evaluation of ocular parameters in children with type 1 diabetes mellitus. West Indian Med J. doi: 10.7727/wimj.2014.383 (Epub ahead of print) CrossRefGoogle Scholar
  11. 11.
    Akil H, Buluş AD, Andiran N, Alp MN (2016) Ocular manifestations of type 1 diabetes mellitus in pediatric population. Indian J Ophthalmol 64:654–658CrossRefPubMedCentralGoogle Scholar
  12. 12.
    van Dijk HW, Kok PH, Garvin M, Sonka M, DeVries JH, Michels RP et al (2009) Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 50:3404–3409CrossRefPubMedCentralGoogle Scholar
  13. 13.
    van Dijk HW, Verbraak FD, Stehouwer M, Kok PH, Garvin MK, Sonka M et al (2011) Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vis Res 51:224–228CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zabeen B, Khaled Z, Nahar J, Baki A, Amin F, Akhter S et al (2013) Hypertriglyceridemia associated with eruptive xanthomas and lipemia retinalis in newly diagnosed diabetes mellitus. Mymensingh Med J 22:591–595PubMedPubMedCentralGoogle Scholar
  15. 15.
    Elhabashy SA, Elbarbary NS, Nageb KM, Mohammed MM (2015) Can optical coherence tomography predict early retinal microvascular pathology in type 1 diabetic adolescents without minimal diabetic retinopathy? A single-centre study. J Pediatr Endocrinol Metab 28:139–146CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Georgakopoulos CD, Eliopoulou MI, Exarchou AM, Tzimis V, Pharmakakis NM, Spiliotis BE (2011) Decreased contrast sensitivity in children and adolescents with type 1 diabetes mellitus. J Pediatr Ophthalmol Strabismus 48:92–97CrossRefPubMedCentralGoogle Scholar
  17. 17.
    De Benedetto U, Querques G, Lattanzio R, Borrelli E, Triolo G, Maestranzi G et al (2014) Macular dysfunction is common in both type 1 and type 2 diabetic patients without macular edema. Retina 34:2171–2177CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lombardo M, Parravano M, Lombardo G, Varano M, Boccassini B, Stirpe M, Serrao S (2014) Adaptive optics imaging of parafoveal cones in type 1 diabetes. Retina 34:546–557CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Brautaset R, Birkeldh U, Alstig PF, Wikén P, Nilsson M (2016) Repeatability using automatic tracing with canon OCT-HS100 and zeiss cirrus HD-OCT 5000. PLoS ONE 11(2):e0149138CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Mendez N, Kommana SS, Szirth B, Khouri AS (2015) Structural changes by spectral domain optical coherence tomography in patients with type 1 diabetes mellitus. J Diabetes Sci Technol 10:271–276CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Evre Pekel
    • 1
  • Selda Ayça Altıncık
    • 2
  • Gökhan Pekel
    • 3
  1. 1.Denizli State Hospital, Eye ClinicDenizliTurkey
  2. 2.Denizli State Hospital, Pediatric EndocrinologyDenizliTurkey
  3. 3.Ophthalmology DepartmentPamukkale UniversityDenizliTurkey

Personalised recommendations