International Ophthalmology

, Volume 38, Issue 5, pp 1871–1878 | Cite as

Nitrite, neopterin levels and tryptophan degradation in allergic conjunctivitis

  • Emine Cinici
  • Saziye Sezin PalabiyikEmail author
  • Hande Sipahi
  • Terken Baydar
Original Paper



The study aims to evaluate changes in neopterin levels and tryptophan degradation which are induced by Th1-type immune response and nitric oxide metabolism which may be involved in allergic inflammation.


Serum nitrite, kynurenine, tryptophan and neopterin levels were evaluated in 36 patients with seasonal allergic conjunctivitis, along with these values in 41 healthy subjects. All these parameters have been compared with symptom and sign scores.


Tryptophan and kynurenine concentrations were not significantly changed, while serum nitrite concentrations were significantly low, and neopterin levels were significantly increased in patients compared to healthy subjects (p < 0.05). There was a significant relationship between symptom scores and serum nitrite levels in patients.


This preliminary study demonstrates that serum nitric oxide metabolism might have a role in allergic conjunctivitis. Serum neopterin levels but not tryptophan metabolism could serve as a biomarker in patients with seasonal allergic conjunctivitis.


Allergic conjunctivitis Kynurenine Neopterin Nitrite Tryptophan breakdown 



This study was supported by the Scientific Research Council of Atatürk University (Number 2014/169).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Bonini S, Sgrulletta R, Coassin M, Bonini S (2009) Allergic conjunctivitis: update on ıts pathophysiology and perspectives for future treatment. Allergy Front Clin Manif 3:25–48CrossRefGoogle Scholar
  2. 2.
    Leonardi A (2013) Allergy and allergic mediators in tears. Exp Eye Res 117:106–117. doi: 10.1016/j.exer.2013.07.019 CrossRefGoogle Scholar
  3. 3.
    Abelson MB (1999) Comparison of the conjunctival allergen challenge model with the environmental model of allergic conjunctivitis. Acta Ophthalmol Scand Suppl 228:38–42CrossRefGoogle Scholar
  4. 4.
    Leonardi A (1999) Pathophysiology of allergic conjunctivitis. Acta Ophthalmol Scand Suppl 228:21–23CrossRefGoogle Scholar
  5. 5.
    Le AV, Broide DH (2006) Indoleamine-2,3-dioxygenase modulation of allergic immune responses. Curr Allergy Asthma Rep 6(1):27–31CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ciprandi G, De Amici M, Tosca M, Fuchs D (2010) Tryptophan metabolism in allergic rhinitis: the effect of pollen allergen exposure. Hum Immunol 71(9):911–915. doi: 10.1016/j.humimm.2010.05.017 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Capuron L, Geisler S, Kurz K, Leblhuber F, Sperner-Unterweger B, Fuchs D (2014) Activated immune system and inflammation in healthy ageing: relevance for tryptophan and neopterin metabolism. Curr Pharm Des 20(38):6048–6057CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Geisler S, Mayersbach P, Becker K, Schennach H, Fuchs D, Gostner JM (2015) Serum tryptophan, kynurenine, phenylalanine, tyrosine and neopterin concentrations in 100 healthy blood donors. Pteridines 26(1):31–36CrossRefGoogle Scholar
  9. 9.
    Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364(1–2):82–90CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Girgin G, Sahin TT, Fuchs D, Kasuya H, Yuksel O, Tekin E, Baydar T (2009) Immune system modulation in patients with malignant and benign breast disorders: tryptophan degradation and serum neopterin. Int J Biol Mark 24(4):265–270CrossRefGoogle Scholar
  11. 11.
    Altindag ZZ, Sahin G, Inanici F, Hascelik Z (1998) Urinary neopterin excretion and dihydropteridine reductase activity in rheumatoid arthritis. Rheumatol Int 18(3):107–111CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Palabiyik SS, Keles S, Girgin G, Arpali-Tanas E, Topdagi E, Baydar T (2016) Neopterin release and tryptophan degradation in patients with uveitis. Curr Eye Res. doi: 10.3109/02713683.2015.1133830 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Baydar T, Yuksel O, Sahin TT, Dikmen K, Girgin G, Sipahi H, Kurukahvecioglu O, Bostanci H, Sare M (2009) Neopterin as a prognostic biomarker in intensive care unit patients. J Crit Care 24(3):318–321. doi: 10.1016/j.jcrc.2008.06.013 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Baydar T, Kemer OE, Kilicarslan B, Cardak A, Girgin G (2016) Detection of neopterin in tear samples. Pteridines 27(1–2):13–16Google Scholar
  15. 15.
    Palabiyik SS, Girgin G, Tutkun E, Yilmaz OH, Baydar T (2013) Immunomodulation and oxidative stress in denim sandblasting workers: changes caused by silica exposure. Arh Hig Rada Toksikol 64(3):431–437. doi: 10.2478/10004-1254-64-2013-2312 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ko SM, Kim MK, Kim JC (2000) The role of nitric oxide in experimental allergic conjunctivitis. Cornea 19(1):84–91CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Samelson-Jones BJ, Yeh SR (2006) Interactions between nitric oxide and indoleamine 2,3-dioxygenase. Biochemistry 45(28):8527–8538. doi: 10.1021/bi060143j CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tracey WR, Tse J, Carter G (1995) Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther 272(3):1011–1015PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ciprandi G, Fuchs D (2012) Tryptophan, neopterin, and nitrite in allergy. Allergy 67(8):1083. doi: 10.1111/j.1398-9995.2012.02862.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kositz C, Schroecksnadel K, Grander G, Schennach H, Kofler H, Fuchs D (2008) High serum tryptophan concentration in pollinosis patients is associated with unresponsiveness to pollen extract therapy. Int Arch Allergy Immunol 147(1):35–40. doi: 10.1159/000128584 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Murr C, Widner B, Wirleitner B, Fuchs D (2002) Neopterin as a marker for immune system activation. Curr Drug Metab 3(2):175–187CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Raitala A, Karjalainen J, Oja SS, Kosunen TU, Hurme M (2006) Indoleamine 2,3-dioxygenase (IDO) activity is lower in atopic than in non-atopic individuals and is enhanced by environmental factors protecting from atopy. Mol Immunol 43(7):1054–1056. doi: 10.1016/j.molimm.2005.06.022 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Buyuktiryaki B, Sahiner UM, Girgin G, Birben E, Soyer OU, Cavkaytar O, Cetin C, Arik Yilmaz E, Yavuz ST, Kalayci O, Baydar T, Sackesen C (2015) Low Indoleamine 2,3-dioxygenase (IDO) activity in persistent food allergy in children. Allergy. doi: 10.1111/all.12785 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ciprandi G, Tosca M, Fuchs D (2011) Nitric oxide metabolites in allergic rhinitis: the effect of pollen allergen exposure. Allergol Immunopathol (Madr) 39(6):326–329. doi: 10.1016/j.aller.2011.01.001 CrossRefGoogle Scholar
  25. 25.
    Unal M, Eskandari HG, Ercetin N, Dogruer ZN, Pata YS (2007) Serum nitrite/nitrate and arginase levels in patients with allergic rhinitis. ORL J Otorhinolaryngol Relat Spec 69(2):113–115. doi: 10.1159/000097842 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Emine Cinici
    • 1
    • 2
  • Saziye Sezin Palabiyik
    • 3
    Email author
  • Hande Sipahi
    • 4
  • Terken Baydar
    • 5
  1. 1.Department of OphthalmologyRegional Training and Research HospitalErzurumTurkey
  2. 2.Department of Ophthalmology, Faculty of MedicineAtatürk UniversityErzurumTurkey
  3. 3.Department of Toxicology, Faculty of PharmacyAtatürk UniversityErzurumTurkey
  4. 4.Department of Toxicology, Faculty of PharmacyYeditepe UniversityIstanbulTurkey
  5. 5.Department of Toxicology, Faculty of PharmacyHacettepe UniversityAnkaraTurkey

Personalised recommendations