International Ophthalmology

, Volume 38, Issue 5, pp 2239–2246 | Cite as

Spectrum of pachychoroid diseases

  • Sezen AkkayaEmail author



To perform a systematic review of the literature examining about the pachychoroid diseases spectrum.


A systematic literature search was performed using the Medline database. A total of four studies directly relevant to our search are reviewed here.


A structurally and functionally intact choroid tissue is vitally important for the retina function. While central retinal artery is responsible to supply the 2/3, internal part of the retina, choroidal vein network is responsible for the remaining 1/3 external part. Abnormal choroidal blood flow leads to photoreceptor dysfunction and photoreceptor death in the retina. The methods used in the visualization of the choroid are ICG angiography (indocyanine green angiography), OCT (optic coherence tomography) devices which are often used nowadays, and its advanced version, OCT angiography. Pachychoroid diseases are a spectrum of 4 different disease groups. These groups are essentially the stages of the disease itself, as the increased severity in the previous group leads the patient to the next group of disease.


The spectrum comprises the following 4 disease groups: Pachychoroid Pigment Epitheliopathy, Central Serous Chorioretinopathy, Pachychoroid Neovasculopathy, Polipoidal Choroidal Vasculopathy. Common Characteristics: Increased choroidal thickening, pathologically dilated veins in the Haller’s layer (pachy-veins), thinning in Sattler’s and choriocapilleris layers.


Pachychoroid diseases Pachychoroid pigment epitheliopathy Central serous chorioretinopathy Pachychoroid neovasculopathy Polipoidal choroidal vasculopathy 


Compliance with ethical standards

Conflict of interest

Author S. Akkaya declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    Warrow DJ, Hoang QV, Freund KB (2013) Pachychoroid pigment epitheliopathy. Retina 33(8):1659–1672CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Azar G, Wolff B, Mauget-Faÿsse M, Rispoli M, Savastano MC, Lumbroso B (2016) Pachychoroid neovasculopathy: aspect on optical coherence tomography angiography. Acta Ophthalmol. doi: 10.1111/aos.13221 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36(3):499–516CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ryan SJ (2006) Retina, vol 1, 4th edn. Elsevier Mosby, PhiladelphiaGoogle Scholar
  5. 5.
    Cao J, McLeod S, Merges CA, Lutty GA (1998) Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch Ophthalmol 116:589–597CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Gemenetzi M, De Salvo G, Lotery AJ (2010) Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye 24:1743–1756CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Spaide RF (2009) Age-related choroidal atrophy. Am J Ophthalmol 147:801–810CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Nishida Y, Fujiwara T, Imamura Y, Lima LH, Kurosaka D, Spaide RF (2012) Choroidal thickness and visual acuity in highly myopic eyes. Retina 32:1229–1236CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hosoda YI, Uji A, Hangai M (2014) Relationship between retinal lesions and inward choroidal bulging in Vogt–Koyanagi–Harada disease. Am J Ophthalmol 157:1056–1063CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Spaide RF, Yannuzzi LA, Slakter JS, Sorenson J, Orlach DA (1995) Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina 15:100–110CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Yannuzzi LA (2011) Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol 151:745–751CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Margolis R, Spaide RF (2009) A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 147:811–815; J Ophthalmol 2010;150:325–329CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Azar G, Wolff B, Mauget-Faÿsse M, Rispoli M, Savastano MC (2016) Lumbroso B Pachychoroid neovasculopathy: aspect on optical coherence tomography angiography. Acta Ophthalmol. doi: 10.1111/aos.13221 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lehmann M, Bousquet E, Beydoun T, Behar-Cohen F (2015) Pachychoroid: an inherited condition? Retina 35(1):10–16CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ersoz MG, Karacorlu M, Arf S, Hocaoglu M, Muslubas IS (2017) Outer nuclear layer thinning in pachychoroid pigment epitheliopathy. Retina. doi: 10.1097/IAE.0000000000001655 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ooto S, Kuroda Y, Yoshimura N (2016) Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography. Am J Ophthalmol 169:199–207CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Arora S, Pyare R, Sridharan P, Arora T, Thakar M, Ghosh B (2016) Choroidal thickness evaluation of healthy eyes, central serous chorioretinopathy, and fellow eyes using spectral domain optical coherence tomography in Indian population. Indian J Ophthalmol 64(10):747–751CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Pang CE, Freund KB (2015) Pachychoroid neovasculopathy. Retina 35(1):1–9CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Dansingani KK, Balaratnasingam C, Klufas MA, Sarraf D, Freund KB (2015) Optical coherence tomography angiography of shallow irregular pigment epithelial detachments in pachychoroid spectrum disease. Am J Ophthalmol 160(6):1243–1254CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Imamura Y, Engelbert M, Iida T, Freund KB, Yanuzzi LA (2010) Polypoidal choroidal vasculopathy: a review. Surv Ophthalmol 55(6):501–515CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kim JH, Kang SW, Kim TH, Kim SJ, Ahm J (2013) Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions. Am J Opthalmol 156(5):974–980CrossRefGoogle Scholar
  22. 22.
    Lin WY, Yang SC, Chen SJ, Tsai CL, Du SZ, Lim TH (2015) Automatic segmentation of polypoidal choroidal vasculopathy from indocyanine green angiography using spatial and temporal patterns. Transl Vis Sci Technol 4(2):7CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kawamura A, Yuzawa M, Mori R, Haruyama M, Tanaka K (2013) Indocyanine green angiographic and optical coherence tomographic findings support classification of polypoidal choroidal vasculopathy into two types. Acta Ophthalmol 91(6):e474–e481CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Ophthalmology DepartmentFatih Sultan Mehmet Training and Research HospitalIstanbulTurkey
  2. 2.Üsküdar, IstanbulTurkey

Personalised recommendations