Advertisement

International Ophthalmology

, Volume 38, Issue 3, pp 1169–1175 | Cite as

Comparative study of visual function and ocular aberrations of two different one-piece designed hydrophilic acrylic intraocular lens

  • Yuxin ZhaoEmail author
  • Zhaoxia Wang
  • Xia Tian
  • Xuehong Wang
  • Xining Gao
Original Paper

Abstract

Purpose

To determine whether the aspherical IOL, Tecnis ZCB00, can improve the visual quality by measuring visual acuity, wavefront aberrations, and contrast sensitivity.

Methods

It was a retrospective case series. Patients who underwent phacoemulsification cataract surgery were divided into two groups. One group (Group TC) was implanted with one-piece aspherical acrylic IOL (Tecnis ZCB00, AMO); the other (Group SA) was implanted with one-piece spherical acrylic IOL (Sensar AAB00, AMO). Eighty-eight eyes were selected into this study, among them 43 eyes in 26 male cases and 45 eyes in 29 female cases. Thirty-six eyes in 23 cases were in Group TC, and 52 eyes in 32 cases were in Group SA. Three months postoperatively, aberrations were analyzed with i-Trace visual function analyzer (Tracy Technologies, USA). Contrast sensitivities were measured with Takaci-CGT-1000 contrast glare tester (Seiko, Japan).

Results

All the 88 eyes underwent phacoemulsification with intraocular lens implantation, without complications during or after surgery. Three months postoperatively, the uncorrected vision acuity in Group TC was significantly better than in Group SA (P = 0.007). At the pupil size of 5.0 mm, higher-order aberrations in Group TC were significantly higher than in Group SA (P = 0.02), especially the spherical aberration (Z 4 0 ) (P < 0.001); at the pupil size of 4.0 mm, Z 4 0 in Group SA was statistically higher than in Group TC (P < 0.001); at the pupil size of 3.0 mm, higher-order aberrations such as coma (Z 3 −1,1 ) and trefoil aberration (Z 3 −3,3 ) in Group SA were obviously higher than in Group TC (P = 0.01). In the low spatial frequency, the contrast sensitivity and the glare sensitivity in Group TC were significantly higher than in Group SA (P < 0.05).

Conclusions

By the short-term follow-up (3 months), the aspherical acrylic IOL can reduce the higher-order aberrations (especially the spherical aberration) and increase the contrast sensitivity to improve the visual performance.

Keywords

Aspherical Intraocular lens Aberration Contrast sensitivity Acrylic 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no any conflict of interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Chen WR, Ye HH, Qian YY, Yang WH, Lin ZH (2006) Comparison of higher-order aberrations and contrast sensitivity between Tecnis Z9001 and CeeOn 911A intraocular lenses: a prospective randomized study. Chin Med J (Engl) 119(21):1779–1784Google Scholar
  2. 2.
    Kohnen T (2003) Aberration-correcting intraocular lenses. J Cataract Refract Surg 29(4):627–628CrossRefPubMedGoogle Scholar
  3. 3.
    McLellan JS, Marcos S, Burns SA (2001) Age-related changes in monochromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci 42(6):1390–1395PubMedGoogle Scholar
  4. 4.
    Ninomiya S, Maeda N, Kuroda T, Fujikado T, Tano Y (2003) Comparison of ocular higher-order aberrations and visual performance between photorefractive keratectomy and laser in situ keratomileusis for myopia. Semin Ophthalmol 18(1):29–34CrossRefPubMedGoogle Scholar
  5. 5.
    Wang L, Dai E, Koch DD, Nathoo A (2003) Optical aberrations of the human anterior cornea. J Cataract Refract Surg 29(8):1514–1521CrossRefPubMedGoogle Scholar
  6. 6.
    Kohnen T, Klaproth OK (2008) Aspheric intraocular lenses. Ophthalmologe 105(3):234–240. doi: 10.1007/s00347-008-1718-y CrossRefPubMedGoogle Scholar
  7. 7.
    Fujikado T, Kuroda T, Ninomiya S, Maeda N, Tano Y, Oshika T, Hirohara Y, Mihashi T (2004) Age-related changes in ocular and corneal aberrations. Am J Ophthalmol 138(1):143–146. doi: 10.1016/j.ajo.2004.01.051 CrossRefPubMedGoogle Scholar
  8. 8.
    Amano S, Amano Y, Yamagami S, Miyai T, Miyata K, Samejima T, Oshika T (2004) Age-related changes in corneal and ocular higher-order wavefront aberrations. Am J Ophthalmol 137(6):988–992. doi: 10.1016/j.ajo.2004.01.005 CrossRefPubMedGoogle Scholar
  9. 9.
    Taketani F, Yukawa E, Yoshii T, Sugie Y, Hara Y (2005) Influence of intraocular lens optical design on high-order aberrations. J Cataract Refract Surg 31(5):969–972. doi: 10.1016/j.jcrs.2004.10.064 CrossRefPubMedGoogle Scholar
  10. 10.
    Kasper T, Buhren J, Kohnen T (2006) Intraindividual comparison of higher-order aberrations after implantation of aspherical and spherical intraocular lenses as a function of pupil diameter. J Cataract Refract Surg 32(1):78–84. doi: 10.1016/j.jcrs.2005.11.018 CrossRefPubMedGoogle Scholar
  11. 11.
    Artal P, Berrio E, Guirao A, Piers P (2002) Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis 19(1):137–143CrossRefPubMedGoogle Scholar
  12. 12.
    Holladay JT, Piers PA, Koranyi G, van der Mooren M, Norrby NE (2002) A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg 18(6):683–691PubMedGoogle Scholar
  13. 13.
    Packer M, Fine IH, Hoffman RS, Piers PA (2004) Improved functional vision with a modified prolate intraocular lens. J Cataract Refract Surg 30(5):986–992. doi: 10.1016/j.jcrs.2003.10.022 CrossRefPubMedGoogle Scholar
  14. 14.
    Nabh R, Ram J, Pandav SS, Gupta A (2009) Visual performance and contrast sensitivity after phacoemulsification with implantation of aspheric foldable intraocular lenses. J Cataract Refract Surg 35(2):347–353. doi: 10.1016/j.jcrs.2008.10.043 CrossRefPubMedGoogle Scholar
  15. 15.
    Bellucci R, Scialdone A, Buratto L, Morselli S, Chierego C, Criscuoli A, Moretti G, Piers P (2005) Visual acuity and contrast sensitivity comparison between Tecnis and AcrySof SA60AT intraocular lenses: a multicenter randomized study. J Cataract Refract Surg 31(4):712–717. doi: 10.1016/j.jcrs.2004.08.049 CrossRefPubMedGoogle Scholar
  16. 16.
    Mester U, Dillinger P, Anterist N (2003) Impact of a modified optic design on visual function: clinical comparative study. J Cataract Refract Surg 29(4):652–660CrossRefPubMedGoogle Scholar
  17. 17.
    Bellucci R, Morselli S, Pucci V (2007) Spherical aberration and coma with an aspherical and a spherical intraocular lens in normal age-matched eyes. J Cataract Refract Surg 33(2):203–209. doi: 10.1016/j.jcrs.2006.10.068 CrossRefPubMedGoogle Scholar
  18. 18.
    Denoyer A, Le Lez ML, Majzoub S, Pisella PJ (2007) Quality of vision after cataract surgery after Tecnis Z9000 intraocular lens implantation: effect of contrast sensitivity and wavefront aberration improvements on the quality of daily vision. J Cataract Refract Surg 33(2):210–216. doi: 10.1016/j.jcrs.2006.10.035 CrossRefPubMedGoogle Scholar
  19. 19.
    Liu YZ (2004) Burst model of phacoemulsification cataract extraction. ZhongHua YanKe ZaZhi 40:234–242Google Scholar
  20. 20.
    Ferris FL 3rd, Kassoff A, Bresnick GH, Bailey I (1982) New visual acuity charts for clinical research. Am J Ophthalmol 94(1):91–96CrossRefPubMedGoogle Scholar
  21. 21.
    Hayashi K, Hayashi H, Nakao F, Hayashi F (2003) Correlation between posterior capsule opacification and visual function before and after neodymium: YAG laser posterior capsulotomy. Am J Ophthalmol 136(4):720–726CrossRefPubMedGoogle Scholar
  22. 22.
    Olsen T (2007) Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 85(5):472–485. doi: 10.1111/j.1600-0420.2007.00879.x CrossRefPubMedGoogle Scholar
  23. 23.
    Wang L, Koch DD (2005) Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye. Arch Ophthalmol 123(9):1226–1230. doi: 10.1001/archopht.123.9.1226 CrossRefPubMedGoogle Scholar
  24. 24.
    Zeng M, Liu Y, Liu X, Yuan Z, Luo L, Xia Y, Zeng Y (2007) Aberration and contrast sensitivity comparison of aspherical and monofocal and multifocal intraocular lens eyes. Clin Exp Ophthalmol 35(4):355–360. doi: 10.1111/j.1442-9071.2007.01452.x CrossRefPubMedGoogle Scholar
  25. 25.
    Artal P, Ferro M, Miranda I, Navarro R (1993) Effects of aging in retinal image quality. J Opt Soc Am A 10(7):1656–1662CrossRefPubMedGoogle Scholar
  26. 26.
    Vilarrodona L, Barrett GD, Johnson B (2004) High-order aberrations in pseudophakia with different intraocular lenses. J Cataract Refract Surg 30(3):571–575. doi: 10.1016/j.jcrs.2003.12.041 CrossRefPubMedGoogle Scholar
  27. 27.
    Linnola RJ, Sund M, Ylonen R, Pihlajaniemi T (1999) Adhesion of soluble fibronectin, laminin, and collagen type IV to intraocular lens materials. J Cataract Refract Surg 25(11):1486–1491CrossRefPubMedGoogle Scholar
  28. 28.
    Kasper T, Buhren J, Kohnen T (2006) Visual performance of aspherical and spherical intraocular lenses: intraindividual comparison of visual acuity, contrast sensitivity, and higher-order aberrations. J Cataract Refract Surg 32(12):2022–2029. doi: 10.1016/j.jcrs.2006.07.029 CrossRefPubMedGoogle Scholar
  29. 29.
    Munoz G, Albarran-Diego C, Montes-Mico R, Rodriguez-Galietero A, Alio JL (2006) Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens. J Cataract Refract Surg 32(8):1320–1327. doi: 10.1016/j.jcrs.2006.02.055 CrossRefPubMedGoogle Scholar
  30. 30.
    Applegate RA, Marsack JD, Ramos R, Sarver EJ (2003) Interaction between aberrations to improve or reduce visual performance. J Cataract Refract Surg 29(8):1487–1495CrossRefPubMedGoogle Scholar
  31. 31.
    Xia YL, Yu FL, Lu ZL, Yang L (2005) Analysis of higher-order aberrations of patients after phacoemulsification and implanted different diameter intraocular lenses. Chin J Pract Ophthalmol 23:745–748Google Scholar
  32. 32.
    Guirao A, Tejedor J, Artal P (2004) Corneal aberrations before and after small-incision cataract surgery. Invest Ophthalmol Vis Sci 45(12):4312–4319. doi: 10.1167/iovs.04-0693 CrossRefPubMedGoogle Scholar
  33. 33.
    Pesudovs K, Dietze H, Stewart OG, Noble BA, Cox MJ (2005) Effect of cataract surgery incision location and intraocular lens type on ocular aberrations. J Cataract Refract Surg 31(4):725–734. doi: 10.1016/j.jcrs.2004.09.028 CrossRefPubMedGoogle Scholar
  34. 34.
    Moreno-Barriuso E, Lloves JM, Marcos S, Navarro R, Llorente L, Barbero S (2001) Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. Invest Ophthalmol Vis Sci 42(6):1396–1403PubMedGoogle Scholar
  35. 35.
    Marcos S, Rosales P, Llorente L, Jimenez-Alfaro I (2007) Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses. J Cataract Refract Surg 33(2):217–226. doi: 10.1016/j.jcrs.2006.10.021 CrossRefPubMedGoogle Scholar
  36. 36.
    Wang Y, Zhao K, Jin Y, Niu Y, Zuo T (2003) Changes of higher order aberration with various pupil sizes in the myopic eye. J Refract Surg 19(2 Suppl):S270–S274PubMedGoogle Scholar
  37. 37.
    Owsley C, Stalvey BT, Wells J, Sloane ME, McGwin G Jr (2001) Visual risk factors for crash involvement in older drivers with cataract. Arch Ophthalmol 119(6):881–887CrossRefPubMedGoogle Scholar
  38. 38.
    Choi J, Kim TI, Tchah H (2005) Comparison of wavefront aberration after cataract surgery with acrylic intraocular lens implantation. J Cataract Refract Surg 31(2):324–329. doi: 10.1016/j.jcrs.2004.06.021 CrossRefPubMedGoogle Scholar
  39. 39.
    Bullimore MA, Olson MD, Maloney RK (1999) Visual performance after photorefractive keratectomy with a 6-mm ablation zone. Am J Ophthalmol 128(1):1–7CrossRefPubMedGoogle Scholar
  40. 40.
    Altmann GE, Nichamin LD, Lane SS, Pepose JS (2005) Optical performance of 3 intraocular lens designs in the presence of decentration. J Cataract Refract Surg 31(3):574–585. doi: 10.1016/j.jcrs.2004.09.024 CrossRefPubMedGoogle Scholar
  41. 41.
    Bellucci R, Morselli S, Piers P (2004) Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses. J Refract Surg 20(4):297–306PubMedGoogle Scholar
  42. 42.
    Lord SR, Menz HB (2000) Visual contributions to postural stability in older adults. Gerontology 46(6):306–310. doi: 10.1159/000022182 CrossRefPubMedGoogle Scholar
  43. 43.
    Nochez Y, Majzoub S, Pisella PJ (2011) Effect of residual ocular spherical aberration on objective and subjective quality of vision in pseudophakic eyes. J Cataract Refract Surg 37(6):1076–1081. doi: 10.1016/j.jcrs.2010.12.056 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yuxin Zhao
    • 1
    Email author
  • Zhaoxia Wang
    • 1
  • Xia Tian
    • 1
  • Xuehong Wang
    • 1
  • Xining Gao
    • 1
  1. 1.Weihai Center HospitalWeihaiChina

Personalised recommendations