Advertisement

International Ophthalmology

, Volume 35, Issue 6, pp 897–902 | Cite as

Optical coherence tomography and pathological myopia: an update of the literature

  • Maria Vittoria CicinelliEmail author
  • Luisa Pierro
  • Marco Gagliardi
  • Francesco Bandello
Review

Abstract

The purpose of this paper is to give an updated review of the last clinical entities in pathological myopia proposed by means of new generation optical coherence tomography (OCT), including enhanced depth imaging (EDI-OCT) and swept source OCT (SS-OCT). PubMed and Google engine search were carried out using the terms “pathological myopia” associated with “coherence tomography,” “enhanced depth imaging,” and “swept source OCT.” Latest publications up to Jan 2015 about myopia-related complications, including open-angle chronic glaucoma, peripapillary retinal changes, acquired macular diseases, and choroidal neovascularization, have been reviewed. New OCT technologies have led to a greater insight in pathophysiology of high-grade myopia. However, further investigation is needed in order to prevent irreversible visual loss and optic nerve damage.

Keywords

Pathologic myopia Optical coherence tomography Myopic CNV Dome-shaped macula Myopic macular hole 

Notes

Financial Support

None.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest in the materials used in this study.

References

  1. 1.
    Chen SJ, Lu P, Zhang WF, Lu JH (2012) High myopia as a risk factor in primary open angle glaucoma. Int J Ophthalmol 5(6):750–753PubMedCentralPubMedGoogle Scholar
  2. 2.
    Reis AS, Sharpe GP, Yang H, Nicolela MT, Burgoyne CF, Chauhan BC (2012) Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology 119:738–747PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Shoji T, Kuroda H, Suzuki M, Baba M, Hangai M, Araie M, Yoneya S (2014) Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser. PLoS One 9(12):e116305PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Dai Y, Jonas JB, Huang H, Wang M, Sun X (2013) Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci 54(3):2013–2018CrossRefPubMedGoogle Scholar
  5. 5.
    Jonas JB, Jonas SB, Jonas RA, Holbach L, Panda-Jonas S (2011) Histology of the parapapillary region in high myopia. Am J Ophthalmol 152:1021–1029CrossRefPubMedGoogle Scholar
  6. 6.
    Ohno-Matsui K, Akiba M, Moriyama M, Ishibashi T, Tokoro T, Spaide RF (2011) Imaging the retrobulbar subarachnoid space around the optic nerve by swept source optical coherence tomography in eyes with pathologic myopia. Invest Ophthalmol Vis Sci 52:9644–9650CrossRefPubMedGoogle Scholar
  7. 7.
    Ohno-Matsui K, Shimada N, Yasuzumi K, Hayashi K, Yoshida T, Kojima A, Moriyama M, Tokoro T (2011) Long-term development of significant visual field defects in highly myopic eyes. Am J Ophthalmol 152(2):256–265CrossRefPubMedGoogle Scholar
  8. 8.
    Freund KB, Ciardella AP, Yannuzzi LA et al (2003) Peripapillary detachment in pathologic myopia. Arch Ophthalmol 121:197–204CrossRefPubMedGoogle Scholar
  9. 9.
    Spaide RF, Akiba M, Ohno-Matsui K (2012) Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography. Retina 32:1037–1044CrossRefPubMedGoogle Scholar
  10. 10.
    Ohno-Matsui K, Akiba M, Moriyama M, Shimada N, Ishibashi T, Tokoro T, Spaide RF (2012) Acquired optic nerve and peripapillary pits in pathologic myopia. Ophthalmology 119(8):1685–1692CrossRefPubMedGoogle Scholar
  11. 11.
    Cohen SY, Laroche A, Leguen Y, Soubrane G, Coscas GJ (1996) Etiology of choroidal neovascularization in young patients. Ophthalmology 103(8):1241–1244CrossRefPubMedGoogle Scholar
  12. 12.
    Ohno-Matsui K, Yoshida T, Futagami S et al (2003) Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol 87(5):570–573PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Iacono P, Battaglia Parodi M, Papayannis A, Kontadakis S, Da Pozzo S, Cascavilla ML, La Spina C, Varano M, Bandello F (2014) Fluorescein angiography and spectral-domain optical coherence tomography for monitoring anti-VEGF therapy in myopic choroidal neovascularization. Ophthalmic Res 52:25–31CrossRefPubMedGoogle Scholar
  14. 14.
    Leveziel N, Caillaux V, Bastuji-Garin S, Zmuda M, Souied EH (2013) Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization. Am J Ophthalmol 155:913–919CrossRefPubMedGoogle Scholar
  15. 15.
    Introini U, Casalino G, Querques G, Gimeno AT, Scotti F, Bandello F (2012) Spectral-domain OCT in anti-VEGF treatment of myopic choroidal neovascularization. Eye 26(7):976–982PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Gaucher D, Erginay A, Lecleire-Collet A et al (2008) Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol 145(5):909–914CrossRefPubMedGoogle Scholar
  17. 17.
    Caillaux V, Gaucher D, Gualino V, Massin P, Tadayoni R, Gaudric A (2013) Morphologic characterization of dome-shaped macula in myopic eyes with serous macular detachment. Am J Ophthalmol 156(5):958–967CrossRefPubMedGoogle Scholar
  18. 18.
    Imamura Y, Iida T, Maruko I, Zweifel SA, Spaide R (2011) Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula. Am J Ophthalmol 151(2):297–302CrossRefPubMedGoogle Scholar
  19. 19.
    Byeon SH, Chu YK (2011) Dome-shaped macula. Am J Ophthalmol 151(6):1101 (author reply 1101–1102) CrossRefPubMedGoogle Scholar
  20. 20.
    Tamura N, Sakai T, Tsuneoka H (2014) Spontaneous resolution of foveal detachment in dome-shaped macula observed by spectral domain optical coherence tomography. Clin Ophthalmol 8:83–86PubMedCentralPubMedGoogle Scholar
  21. 21.
    Itakura H, Kishi S, Li D, Akiyama H (2013) Observation of posterior precortical vitreous pocket using swept source optical coherence tomography. Invest Ophthalmol Vis Sci 54:3102–3107CrossRefPubMedGoogle Scholar
  22. 22.
    Kishi S, Hagimura N, Shimizu K (1996) The role of the premacular liquefied pocket and premacular vitreous cortex in idiopathic macular hole development. Am J Ophthalmol 122:622–628CrossRefPubMedGoogle Scholar
  23. 23.
    Kishi S, Shimizu K (1994) Oval defect in detached posterior hyaloid membrane in idiopathic preretinal macular fibrosis. Am J Ophthalmol 118:451–456CrossRefPubMedGoogle Scholar
  24. 24.
    Kobayashi H, Kobayashi K, Okinami S (2002) Macular hole and myopic refraction. Br J Ophthalmol 86(11):1269–1273PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Sun CB, Liu Z, Xue AQ, Yao K (2002) Natural evolution from macular retinoschisis to full-thickness macular hole in highly myopic eyes. Eye 24(12):1787–1791CrossRefGoogle Scholar
  26. 26.
    Lin CW, Ho TC, Yang CM (2015) The development and evolution of full thickness macular hole in highly myopic eyes. Eye (Lond) 29(3):388–396CrossRefGoogle Scholar
  27. 27.
    Shimada N, Ohno-Matsui K, Nishimuta A et al (2008) Detection of paravascular lamellar holes and other paravascular abnormalities by optical coherence tomography in eyes with high myopia. Ophthalmology 115(4):708–717CrossRefPubMedGoogle Scholar
  28. 28.
    Muraoka Y, Tsujikawa A, Hata M et al (2015) Paravascular inner retinal defect associated with high myopia or epiretinal membrane. JAMA Ophthalmol 133(4):413–420CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Maria Vittoria Cicinelli
    • 1
  • Luisa Pierro
    • 1
  • Marco Gagliardi
    • 1
  • Francesco Bandello
    • 1
  1. 1.Department of Ophthalmology, San Raffaele Scientific InstituteVita-Salute UniversityMilanItaly

Personalised recommendations