International Ophthalmology

, Volume 34, Issue 5, pp 1067–1074 | Cite as

Color vision deficiency in a middle-aged population: the Shahroud Eye Study

  • Ebrahim Jafarzadehpur
  • Hassan Hashemi
  • Mohammad Hassan Emamian
  • Mehdi Khabazkhoob
  • Shiva Mehravaran
  • Mohammad Shariati
  • Akbar FotouhiEmail author
Original Paper


The aim of this study was to determine the prevalence of color vision defects in the middle-age population of Shahroud, Iran. We selected 6,311 people from the 40- to 64-year-old population through random cluster sampling. Color vision testing was performed with the Farnsworth D-15. Cases with similar and symmetric results in both eyes were classified as hereditary, and those with asymmetric results were considered acquired. Cases that did not conform to standard patterns were classified as unknown category. Of 5,190 respondents (response rate 82.2 %), 5,102 participants underwent the color vision test. Of these, 14.7 % (95 % confidence interval 13.7–15.6) had some type of color vision deficiency. Of the 2,157 male participants, 6.2 % were hereditary and 10.2 % were acquired and of the 2,945 female participants, 3.1 % were hereditary and 10 % were acquired. Hereditary color deficiencies were mostly of the deutan form (63.8 %), and acquired deficiencies were mostly tritan (66.1 %). The prevalence of hereditary and acquired color vision deficiency, as well as different types of red–green and blue–yellow color vision defects significantly increased with age (p < 0.001). In conclusion, the pattern of color vision defects among the middle-aged population of Shahroud was significantly different from that seen in the younger population. This could be due to changes associated with age, gender, medical and ocular conditions, and differences in race and environment. Thus, results of previous examinations and the overall health status should be considered before making any judgment about the status of color vision in middle-aged people.


Color vision deficiency Middle age Hereditary Acquired Iran 



This project was supported by Noor Ophthalmology Research Center and Shahroud University of Medical Sciences.


  1. 1.
    Lennie P, D’Zmura M (1988) Mechanisms of color vision. Crit Rev Neurobiol 3:333–400PubMedGoogle Scholar
  2. 2.
    Kochendoerfer GG, Lin SW, Sakmar TP, Mathies RA (1999) How color visual pigments are tuned. Trends Biochem Sci 24:300–305PubMedCrossRefGoogle Scholar
  3. 3.
    Lutze M, Pokorny J, Smith VC (2006) Achromatic parvocellular contrast gain in normal and color defective observers: implications for the evolution of color vision. Vis Neurosci 23:611–616PubMedCrossRefGoogle Scholar
  4. 4.
    Conway BR, Chatterjee S, Field GD, Horwitz GD, Johnson EN, Koida K, Mancuso K (2010) Advances in color science: from retina to behavior. J Neurosci 30:14955–14963PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Swanson WH, Cohen JM (2003) Color vision. Ophthalmol Clin North Am 16:179–203PubMedCrossRefGoogle Scholar
  6. 6.
    Pease LP (2006) Color vision. In: Benjamin WJ (ed) Borish’s clinical refraction, 2nd edn. Butterworth–Heinemann–Elsevier, St. Louis, pp 289–355CrossRefGoogle Scholar
  7. 7.
    Malaspina P, Biondi G, Santillo C (1989) Color blindness (CB) distribution in the male population of Albanian and Croatian communities of Molise, Italy. Gene Geogr 3:53–63PubMedGoogle Scholar
  8. 8.
    Qian YS, Abudureheman Z, Aximu A, Muhamat P, Yasen G, Aili M, Chu RY (2009) Comparison of congenital color vision deficiencies prevalence between Han and Uygur high-school students. Zhonghua Yan Ke Za Zhi 45:131–134PubMedGoogle Scholar
  9. 9.
    Citirik M, Acaroglu G, Batman C, Zilelioglu O (2005) Congenital color blindness in young Turkish men. Ophthalmic Epidemiol 12:133–137PubMedCrossRefGoogle Scholar
  10. 10.
    Shah A, Hussain R, Fareed M, Afzal M (2013) Prevalence of red–green color vision defects among Muslim males and females of Manipur, India. Iran J Public Health 42:16–24PubMedCentralPubMedGoogle Scholar
  11. 11.
    Narahari S (1993) Color blindness and natural selection: studies in four nomadic tribal groups from Andhra Pradesh, India. Anthropol Anz 51:169–171PubMedGoogle Scholar
  12. 12.
    Jorgensen AL, Deeb SS, Motulsky AG (1990) Molecular genetics of X chromosome-linked color vision among populations of African and Japanese ancestry: high frequency of a shortened red pigment gene among Afro-Americans. Proc Natl Acad Sci USA 87:6512–6516PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Rebato E, Calderon R (1990) Incidence of red–green color blindness in the Basque population. Anthropol Anz 48:145–148PubMedGoogle Scholar
  14. 14.
    Papaconstantinou D, Georgalas I, Kalantzis G et al (2009) Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma. Clin Ophthalmol 3:251–257PubMedCentralPubMedGoogle Scholar
  15. 15.
    Kagami S, Bradshaw SE, Fukumoto M, Tsukui I (2009) Cataracts in airline pilots: prevalence and aeromedical considerations in Japan. Aviat Space Environ Med 80:811–814PubMedCrossRefGoogle Scholar
  16. 16.
    Thiadens AA, Roosing S, Collin RW et al (2010) Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. Ophthalmology 117:825–830PubMedCrossRefGoogle Scholar
  17. 17.
    Almog Y, Nemet A (2010) The correlation between visual acuity and color vision as an indicator of the cause of visual loss. Am J Ophthalmol 149:1000–1004PubMedCrossRefGoogle Scholar
  18. 18.
    Feitosa-Santana C, Paramei GV, Nishi M, ltieri M, Costa MF, Ventura DF (2010) Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Color Test. Ophthalmic Physiol Opt 30:717–723Google Scholar
  19. 19.
    Shah KH, Holland GN, Yu F, Van Natta M, Nusinowitz S (2006) Contrast sensitivity and color vision in HIV-infected individuals without infectious retinopathy. Am J Ophthalmol 142:284–292PubMedCrossRefGoogle Scholar
  20. 20.
    Muller T, Woitalla D, Peters S, Kohla K, Przuntek H (2002) Progress of visual dysfunction in Parkinson’s disease. Acta Neurol Scand 105:256–260PubMedCrossRefGoogle Scholar
  21. 21.
    Syed AB, Armstrong RA, Smith CU (2005) A quantitative analysis of optic nerve axons in elderly control subjects and patients with Alzheimer’s disease. Folia Neuropathol 43:1–6PubMedGoogle Scholar
  22. 22.
    Shuwairi SM, Cronin-Golomb A, McCarley RW, O’Donnell BF (2002) Color discrimination in schizophrenia. Schizophr Res 55:197–204PubMedCrossRefGoogle Scholar
  23. 23.
    Willmann G, Ivanov IV, Fischer MD, Lahiri S, Pokharel RK, Werner A, Khurana TS (2010) Effects on color discrimination during long term exposure to high altitudes on Mt Everest. Br J Ophthalmol 94:1393–1397PubMedCrossRefGoogle Scholar
  24. 24.
    Guest M, D’Este C, Attia J et al (2011) Impairment of color vision in aircraft maintenance workers. Int Arch Occup Environ Health 84:723–733PubMedCrossRefGoogle Scholar
  25. 25.
    Attarchi MS, Labbafinejad Y, Mohammadi S (2010) Occupational exposure to different levels of mixed organic solvents and color vision impairment. Neurotoxicol Teratol 32:558–562PubMedCrossRefGoogle Scholar
  26. 26.
    Ascaso FJ, Cruz N, Del Buey MA, Cristobal JA (2009) An unusual case of cocaine-induced maculopathy. Eur J Ophthalmol 19:880–882PubMedGoogle Scholar
  27. 27.
    Salomao SR, Watanabe SE, Berezovsky A, Motono M (2007) Multifocal electroretinography, color discrimination and ocular toxicity in tamoxifen use. Curr Eye Res 32:345–352PubMedCrossRefGoogle Scholar
  28. 28.
    Gobba F, Cavalleri A (2003) Color vision impairment in workers exposed to neurotoxic chemicals. Neurotoxicology 24:693–702PubMedCrossRefGoogle Scholar
  29. 29.
    Wang C, Tan X, Bi Y et al (2002) Cross-sectional study of the ophthalmological effects of carbon disulfide in Chinese viscose workers. Int J Hyg Environ Health 205:367–372PubMedCrossRefGoogle Scholar
  30. 30.
    Campagna D, Stengel B, Mergler D, Limasset JC, Diebold F, Michard D, Huel G (2001) Color vision and occupational toluene exposure. Neurotoxicol Teratol 23:473–480PubMedCrossRefGoogle Scholar
  31. 31.
    Nguyen-Tri D, Overbury O, Faubert J (2003) The role of lenticular senescence in age-related color vision changes. Invest Ophthalmol Vis Sci 44:3698–3704PubMedCrossRefGoogle Scholar
  32. 32.
    Pinckers A (1980) Color vision and age. Ophthalmologica 181:23–30PubMedCrossRefGoogle Scholar
  33. 33.
    Modarres M, Mirsamadi M, Peyman GA (1997) Prevalence of congenital color deficiencies in secondary-school students in Tehran. Int Ophthalmol 20:221–222CrossRefGoogle Scholar
  34. 34.
    Zarrabi Z, Sadighian M (1974) Incidence of color blindness (color defect) among Iranian primary school children. Acta Med Iran 17:70–72PubMedGoogle Scholar
  35. 35.
    Dargahi H, Einollahi N, Dashti N (2010) Color blindness defect and medical laboratory technologists: unnoticed problems and the care for screening. Acta Med Iran 48:172–177PubMedGoogle Scholar
  36. 36.
    Tabansi PN, Anochie IC, Nkanginieme KE, Pedro-Egbe CN (2008) Screening for congenital color vision deficiency in primary children in Port Harcourt City; teachers’ knowledge and performance. Niger J Med 17:428–432PubMedCrossRefGoogle Scholar
  37. 37.
    Ganley JP, Lian MC (1997) Projected color slides as a method for mass screening of red–green color deficient individuals. Ophthalmic Epidemiol 4:213–221PubMedCrossRefGoogle Scholar
  38. 38.
    Lanthony P (1978) The desaturated panel D-15. Doc Ophthalmol 46:185–189PubMedGoogle Scholar
  39. 39.
    Rebato E, Calderon R (1990) Incidence of red–green color blindness in the Basque population. Anthropol Anz 48:145–148PubMedGoogle Scholar
  40. 40.
    Chia A, Gazzard G, Tong L, Zhang X, Sim EL, Fong A, Mei Saw S (2008) Red–green colour blindness in Singaporean children. Clin Exp Ophthalmol 36:464–467Google Scholar
  41. 41.
    Reshadat S, Azami N, Ghasemi SR, Almasi A, Azizi A (2012) Color blindness in male drivers referred to Samenol-A’emeh Clinic (2005–2008). J Kermanshah Univ Med Sci 16:421–426Google Scholar
  42. 42.
    Khalaj M, Barikani A, Mohammadi M (2014) Prevalence of color vision deficiency in Qazvin. Zahedan J Res Med Sci 16:91–93Google Scholar
  43. 43.
    Alabdelmoneam M (2011) Prevalence of congenital color vision defects in Saudi females of Arab origin. Optometry 82:543–548PubMedCrossRefGoogle Scholar
  44. 44.
    Birch J (2010) Identification of red–green color deficiency: sensitivity of the Ishihara and American Optical Company (Hard, Rand and Rittler) pseudo-isochromatic plates to identify slight anomalous trichromatism. Ophthalmic Physiol Opt 30:667–671PubMedCrossRefGoogle Scholar
  45. 45.
    Miyahara E (2008) Errors reading the Ishihara pseudoisochromatic plates made by observers with normal color vision. Clin Exp Optom 91:161–165PubMedCrossRefGoogle Scholar
  46. 46.
    Cole BL, Lian KY, Lakkis C (2006) The new Richmond HRR pseudoisochromatic test for color vision is better than the Ishihara test. Clin Exp Optom 89:73–80PubMedCrossRefGoogle Scholar
  47. 47.
    Cole BL, Orenstein JM (2003) Does the Farnsworth D15 test predict the ability to name colors? Clin Exp Optom 86:221–229PubMedCrossRefGoogle Scholar
  48. 48.
    Cotter SA, Lee DY, French AL (1999) Evaluation of a new color vision test: “color vision testing made easy”. Optom Vis Sci 76:631–636PubMedCrossRefGoogle Scholar
  49. 49.
    Dain SJ (2004) Clinical colour vision tests. Clin Exp Optom 87:276–293PubMedCrossRefGoogle Scholar
  50. 50.
    Baraas RC, Foster DH, Amano K, Nascimento SM (2010) Color constancy of red–green dichromats and anomalous trichromats. Invest Ophthalmol Vis Sci 51:2286–2293PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lawrenson JG, Kelly C, Lawrenson AL, Birch J (2002) Acquired color vision deficiency in patients receiving digoxin maintenance therapy. Br J Ophthalmol 86:1259–1261PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Vu BL, Easterbrook M, Hovis JK (1999) Detection of color vision defects in chloroquine retinopathy. Ophthalmology 106:1799–1803PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ebrahim Jafarzadehpur
    • 1
  • Hassan Hashemi
    • 2
  • Mohammad Hassan Emamian
    • 3
  • Mehdi Khabazkhoob
    • 2
  • Shiva Mehravaran
    • 2
  • Mohammad Shariati
    • 4
  • Akbar Fotouhi
    • 5
    Email author
  1. 1.Department of OptometryTehran University of Medical SciencesTehranIran
  2. 2.Noor Ophthalmology Research CenterNoor Eye HospitalTehranIran
  3. 3.Department of Epidemiology and Biostatistics, School of Public HealthShahroud University of Medical SciencesShahroudIran
  4. 4.Department of Community Medicine, School of MedicineTehran University of Medical SciencesTehranIran
  5. 5.Department of Epidemiology and Biostatistics, School of Public HealthTehran University of Medical SciencesTehranIran

Personalised recommendations