International Ophthalmology

, Volume 34, Issue 2, pp 225–233 | Cite as

Laser-assisted subepithelial keratomileusis with mitomycin C for myopic astigmatism ≥2.00 diopters using a Zeiss MEL 80 Excimer

  • A. FringsEmail author
  • B. Vidic
  • Y. El-Shabrawi
  • N. Ardjomand
Original Article


To examine the refractive and visual outcome of laser-assisted subepithelial keratomileusis (LASEK) with mitomycin C(MMC) in eyes with myopic astigmatism ≥2.00 diopters (D). This study comprised 82 eyes of 82 consecutive patients (37 male, 45 female; mean age at surgery 34.7 ± 9.0 years) with preoperative topographic astigmatism ≥2.00 D and mean preoperative spherical equivalent (SE) −4.50 ± 1.13 D. To assess whether the refractive results differed with the amount of corrected sphere, the data were separated by preoperative SE thereby defining two groups with SE < −5.00 D (−2.00 to −4.75 D) and ≥−5.00 D (−5.00 to −7.75 D). Mean manifest refraction spherical equivalent (MRSE) of −0.39 ± 0.52 D was obtained at the 6-months (5.4 ± 1.6 months) follow-up. The results were within ±1.00 D of the attempted correction in 89 % of patients. The mean postoperative corrected distant visual acuity was −0.02 ± 0.065 logMAR (range −0.10 to 0.15 logMAR). Sixty-seven (81.7 %) of all eyes did not change lines in safety. There was no statistically significant difference (P = 0.262) in safety between the SE groups. Mean efficacy was 0.89 ± 0.27. There was a statistically significant difference in efficacy (P = 0.024) between the preoperative SE groups. Larger ablation zones were associated with better visual outcome, confirmed by safety, efficacy and predictability. The data reported here demonstrated that LASEK using a Zeiss MEL 80 excimer laser with an additional application of MMC is a safe and efficient technique with predictable results for the correction of eyes with myopic astigmatism ≥2.00 D.


Laser-assisted subepithelial keratomileusis Astigmatism Mitomycin C Excimer laser 



None of the authors has any financial or proprietary interest in any material or method mentioned.


  1. 1.
    Taneri S, Zieske JD, Azar DT (2004) Evolution, techniques, clinical outcomes, and pathophysiology of LASEK: review of the literature. Surv Ophthalmol 49:576–602PubMedCrossRefGoogle Scholar
  2. 2.
    Alpins NA, Goggin M (2004) Practical astigmatism analysis for refractive outcomes in cataract and refractive surgery. Surv Ophthalmol 49:109–122PubMedCrossRefGoogle Scholar
  3. 3.
    Alpins N (2002) A re-analysis of astigmatism correction. Br J Ophthalmol 86:832PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Alpins N (2001) Analysis of aggregate surgically induced refractive change, prediction error, and intraocular astigmatism. J Refract Surg 17:705–707PubMedGoogle Scholar
  5. 5.
    Wolffsohn JS, Bhogal G, Shah S (2011) Effect of uncorrected astigmatism on vision. J Cataract Refract Surg 37:454–460PubMedCrossRefGoogle Scholar
  6. 6.
    Dupps WJ Jr, Kohnen T, Mamalis N, Rosen ES, Koch DD, Obstbaum SA et al (2011) Standardized graphs and terms for refractive surgery results. J Cataract Refract Surg 37:1–3PubMedCrossRefGoogle Scholar
  7. 7.
    Azar DT, Ang RT, Lee JB, Kato T, Chen CC, Jain S et al (2001) Laser subepithelial keratomileusis: electron microscopy and visual outcomes of flap photorefractive keratectomy. Curr Opin Ophthalmol 12:323–328PubMedCrossRefGoogle Scholar
  8. 8.
    Carones F, Vigo L, Scandola E, Vacchini L (2002) Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy. J Cataract Refract Surg 28:2088–2095PubMedCrossRefGoogle Scholar
  9. 9.
    Leccisotti A (2008) Mitomycin C in photorefractive keratectomy: effect on epithelialization and predictability. Cornea 27:288–291PubMedCrossRefGoogle Scholar
  10. 10.
    Netto MV, Mohan RR, Ambrosio R Jr, Hutcheon AE, Zieske JD, Wilson SE (2005) Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea 24:509–522PubMedCrossRefGoogle Scholar
  11. 11.
    Huang PY, Huang PT, Astle WF, Ingram AD, Hebert A, Huang J et al (2011) Laser-assisted subepithelial keratectomy and photorefractive keratectomy for post-penetrating keratoplasty myopia and astigmatism in adults. J Cataract Refract Surg 37:335–340PubMedCrossRefGoogle Scholar
  12. 12.
    Zhao LQ, Wei RL, Cheng JW, Li Y, Cai JP, Ma XY (2010) Meta-analysis: clinical outcomes of laser-assisted subepithelial keratectomy and photorefractive keratectomy in myopia. Ophthalmology 117:1912–1922PubMedCrossRefGoogle Scholar
  13. 13.
    Skevas C, Katz T, Wagenfeld L, Richard G, Linke S (2013) Subjective pain, visual recovery and visual quality after LASIK, EpiLASIK (flap off) and APRK—a consecutive, non-randomized study. Graefes Arch Clin Exp Ophthalmol 251:1175–1183PubMedCrossRefGoogle Scholar
  14. 14.
    Gamaly TO, El Danasoury A, El Maghraby A (2007) A prospective, randomized, contralateral eye comparison of epithelial laser in situ keratomileusis and photorefractive keratectomy in eyes prone to haze. J Refract Surg 23:S1015–S1020PubMedGoogle Scholar
  15. 15.
    Fraunfelder FW, Wilson SE (2001) Laser in situ keratomileusis versus photorefractive keratectomy in the correction of myopic astigmatism. Cornea 20:385–387PubMedCrossRefGoogle Scholar
  16. 16.
    Jabbur NS, Kraff C (2005) Visx Wavefront Study Group. Wavefront-guided laser in situ keratomileusis using the WaveScan system for correction of low to moderate myopia with astigmatism: 6-months results in 277 eyes. J Cataract Refract Surg 31:1493–1501PubMedCrossRefGoogle Scholar
  17. 17.
    Lee VW (2006) The LADAR6000: results in highly myopic and highly astigmatic eyes. J Refract Surg 22:S980–S982PubMedGoogle Scholar
  18. 18.
    Venter J (2005) Wavefront-guided LASIK with the NIDEK NAVEX platform for the correction of myopia and myopic astigmatism with 6-months follow-up. J Refract Surg 21:S640–S645PubMedGoogle Scholar
  19. 19.
    Aizawa D, Shimizu K, Komatsu M, Ito M, Suzuki M, Ohno K, Uozato H (2003) Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-months follow-up. J Cataract Refract Surg 29:1507–1513PubMedCrossRefGoogle Scholar
  20. 20.
    Salah T, Waring GO III, el-Maghraby A, Moadel K, Grimm SB. Excimer laser in situ keratomileusis (LASIK) under a corneal flap for myopia of 2–20 D. Trans Am Ophthalmol Soc 1995;93:163–183. discussion 184–190. Available at: Accessed 16 Oct 2012
  21. 21.
    Helmy SA, Salah A, Badawy TT, Sidky AN (1996) Photorefractive keratectomyand laser in situ keratomileusis for myopia between 6.00 and 10.00 diopters. J Refract Surg 12:417–421PubMedGoogle Scholar
  22. 22.
    Frings A, Katz T, Richard G, Druchkiv V, Linke SJ (2013) Efficacy and predictability of laser in situ keratomileusis (LASIK) for low astigmatism of 0.75 diopter or less. J Cataract Refract Surg 39:366–377PubMedCrossRefGoogle Scholar
  23. 23.
    Ghadhfan F, Al-Rajhi A, Wagoner MD (2007) Laser in situ keratomileusis versus surface ablation: visual outcomes and complications. J Cataract Refract Surg 33:2041–2048PubMedCrossRefGoogle Scholar
  24. 24.
    Lee JB, Seong GJ, Lee JH, Seo KY, Lee YG, Kim EK (2001) Comparison of laser epithelial keratomileusis and photorefractive keratectomy for low to moderate myopia. J Cataract Refract Surg 27:565–570PubMedCrossRefGoogle Scholar
  25. 25.
    Dastjerdi MH, Soong HK (2002) LASEK (laser subepithelial keratomileusis). Curr Opin Ophthalmol 13:261–263PubMedCrossRefGoogle Scholar
  26. 26.
    Sakimoto T, Rosenblatt MI, Azar DT (2006) Laser eye surgery for refractive errors. Lancet 367:1432–1447PubMedCrossRefGoogle Scholar
  27. 27.
    Alpins NA (1997) Vector analysis of astigmatism changes by flattening, steepening, and torque. J Cataract Refract Surg 23:1503–1514PubMedCrossRefGoogle Scholar
  28. 28.
    Holladay JT, Dudeja DR, Chang J (1999) Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography. J Cataract Refract Surg 25:663–669PubMedCrossRefGoogle Scholar
  29. 29.
    Talamo JH, Gollamudi S, Green WR, De La Cruz Z, Filatov V, Stark WJ (1991) Modulation of corneal wound healing after excimer laser keratomileusis using topical mitomycin C and steroids. Arch Ophthalmol 109:1141–1146PubMedCrossRefGoogle Scholar
  30. 30.
    Hashemi H, Taheri SM, Fotouhi A, Kheiltash A (2004) Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy in high myopia: a prospective clinical study. BMC Ophthalmol 4:12PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Carones F, Vigo L, Scandola E, Vacchini L (2002) Evaluation of the prophylactic use of Mitomycin-C to inhibit haze formation after photorefractive keratectomy. J Cataract Refract Surg 28:2008–2095CrossRefGoogle Scholar
  32. 32.
    Yee RW, Yee SB (2004) Update on laser subepithelial keratectomy (LASEK). Curr Opin Ophthalmol 15:333–341PubMedCrossRefGoogle Scholar
  33. 33.
    Vajpayee RB, Ghate D, Sharma N, Tandon R, Titiyal JS, Pandey RM (2008) Risk factors for postoperative cylindrical prediction error after laser in situ keratomileusis for myopia and myopic astigmatism. Eye (Lond) 22:332–339CrossRefGoogle Scholar
  34. 34.
    Rajan MS, O’Brart D, Jaycock P, Marshall J (2006) Effects of ablation diameter on long-term refractive stability and corneal transparency after photorefractive keratectomy. Ophthalmology 113:1798–1806PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Frings
    • 1
    • 2
    Email author
  • B. Vidic
    • 2
  • Y. El-Shabrawi
    • 2
  • N. Ardjomand
    • 2
  1. 1.Department of OphthalmologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of OphthalmologyMedical University of GrazGrazAustria

Personalised recommendations