International Ophthalmology

, Volume 32, Issue 3, pp 211–215 | Cite as

Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI)

  • Gennady Landa
  • Anisha A. Jangi
  • Patricia M. T. Garcia
  • Richard B. Rosen
Original Paper


The Retinal Functional Imager (RFI) is a novel method for assessing retinal blood flow (RBF) velocity. The purpose of this study was to evaluate RBF velocities in normal human retinas using the RFI. RBF velocity measurements were performed in normal subjects using the RFI (Optical Imaging Ltd., Rehovot, Israel) at the Retina Center of The New York Eye and Ear Infirmary, New York, USA. Using proprietary software processing, the characteristics of the RBF were visualized and measured. The study population comprised fifty-four eyes of 27 normal subjects (20 male and 34 female). The average arterial blood flow velocity was 4.6 ± 0.6 mm/s in males and 4.8 ± 0.7 mm/s in females (the difference was not statistically significant, p value = 0.27). The average venous blood flow velocity was 3.8 ± 0.5 mm/s in males and 3.6 ± 0.4 mm/s in females (the difference again was not statistically significant, p value = 0.11). The average arterial blood flow velocity was 4.8 ± 0.5 mm/s in the right eye and 4.6 ± 0.7 mm/s in the left eye. The average venous blood flow velocity was 3.7 ± 0.4 mm/s in the right eye and 3.6 ± 0.3 mm/s in the left eye. Venous and arterial blood flow velocities were found to be faster in the right eye than in the left eye in our sample, but the differences were not statistically significant (p value = 0.53 and 0.33, respectively). This is the first report of quantification of the RBF using the RFI. The RFI appears to be an effective tool in quantitative evaluations of RBF velocities. The values from the study constitute a normative database which can be used to evaluate and compare eyes with known or suspected pathology.


Retinal blood flow velocity Retinal Functional Imager Human retina 



We would like to thank Darin Nelson for help with preparation of this manuscript.

Conflict of interest

No author has any conflict or commercial interest in any material or method mentioned.


  1. 1.
    Horio N, Clermont AC, Abiko A et al (2004) Angiotensin AT 1 receptor antagonism normalizes retinal blood flow and acetylcholine-induced vasodilation in normotensive diabetic rats. Diabetologia 47:113–123. doi: 10.1007/s00125-003-1262-x PubMedCrossRefGoogle Scholar
  2. 2.
    Hata Y, Clermont A, Yamauchi T et al (2000) Retinal expression, regulation, and functional bioactivity of prostacyclin-stimulating factor. J Clin Invest 106(4):541–550. doi: 10.1172/JCI8338 PubMedCrossRefGoogle Scholar
  3. 3.
    Kurioka Y, Inaba M, Kawagishi T et al (2001) Increased retinal blood flow in patients with Graves’ disease: influence of thyroid function and ophthalmopathy. Eur J Endocrinol 144:99–107. doi: 10.1530/eje.0.1440099 PubMedCrossRefGoogle Scholar
  4. 4.
    Feke GT, Tagawa H, Deupree DM et al (1989) Blood flow in the normal human retina. Invest Ophthalmol Vis Sci 30:58–65PubMedGoogle Scholar
  5. 5.
    Harris A et al (2003) Atlas of ocular blood flow: vascular anatomy, pathophysiology and metabolism. Butterworth-Heinemann, PhiladelphiaGoogle Scholar
  6. 6.
    Wang Y, Bower BA, Izatt JA, Tan O, Huang D (2007) In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J Biomed Opt 12:041215. doi: 10.1117/1.2772871 PubMedCrossRefGoogle Scholar
  7. 7.
    Pournaras CJ, Rungger-Brändle E, Riva CE et al (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27(3):284–330. doi: 10.1016/j.preteyeres.2008.02.002 PubMedCrossRefGoogle Scholar
  8. 8.
    Rechtman E, Harris A, Kumar R et al (2003) An update on retinal circulation assessment technologies. Curr Eye Res 27(6):329–343. doi: 10.1076/ceyr.27.6.329.18193 PubMedCrossRefGoogle Scholar
  9. 9.
    Nelson DA, Krupsky S, Pollack A et al (2005) Special report: noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 36:57–66PubMedGoogle Scholar
  10. 10.
    Landa G, Garcia PM, Rosen RB (2009) Correlation between retina blood flow velocity assessed by retinal function imager and retina thickness estimated by scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica 223(3):155–161PubMedCrossRefGoogle Scholar
  11. 11.
    Jensen PS, Glucksberg MR (1998) Regional variation in capillary hemodynamics in the cat retina. Invest Ophthalmol Vis Sci 39:407–414PubMedGoogle Scholar
  12. 12.
    Garcia JP Jr, Garcia PT, Rosen RB (2002) Retinal blood flow in the normal human eye using the canon laser blood flowmeter. Ophthalmic Res 34:295–299. doi: 10.1159/000065600 PubMedCrossRefGoogle Scholar
  13. 13.
    Shimada N, Ohno-Matsui K, Harino S et al (2004) Reduction of retinal blood flow in high myopia. Graefes Arch Clin Exp Ophthalmol 242(4):284–288. doi: 10.1007/s00417-003-0836-0 PubMedCrossRefGoogle Scholar
  14. 14.
    Iester M, Torre PG, Bricola G, Bagnis A, Calabria G (2007) Retinal blood flow autoregulation after dynamic exercise in healthy young subjects. Ophthalmologica 221(3):180–185. doi: 10.1159/000099298 PubMedCrossRefGoogle Scholar
  15. 15.
    Wolf S, Arend O, Reim M (1994) Measurement of retinal hemodynamics with scanning laser ophthalmoscopy: reference values and variation. Surv Ophthalmol 38:S95–S100. doi: 10.1016/0039-6257(94)90052-3 PubMedCrossRefGoogle Scholar
  16. 16.
    Rojanapongpun P, Drance SM (1993) Velocity of ophthalmic arterial flow recorded by Doppler ultrasound in normal subjects. Am J Ophthalmol 115(2):174–180PubMedGoogle Scholar
  17. 17.
    Ustymowicz A, Mariak Z, Weigele J et al (2005) Normal reference intervals and ranges of side-to-side and day-to-day variability of ocular blood flow Doppler parameters. Ultrasound Med Biol 31(7):895–903. doi: 10.1016/j.ultrasmedbio.2005.03.013 PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshida A, Feke GT, Ogasawara H, Goger DG, McMeel JW (1996) Retinal hemodynamics in middle-aged normal subjects. Ophthalmic Res 28(6):343–350PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Gennady Landa
    • 1
    • 2
  • Anisha A. Jangi
    • 1
  • Patricia M. T. Garcia
    • 1
    • 2
  • Richard B. Rosen
    • 1
    • 2
  1. 1.Retina Center, Department of Ophthalmology New York Eye and Ear InfirmaryNew YorkUSA
  2. 2.New York Medical CollegeValhallaUSA

Personalised recommendations