International Ophthalmology

, Volume 28, Issue 3, pp 209–222 | Cite as

Graft failure IV. Immunologic mechanisms of corneal transplant rejection

  • Eva-Marie Chong
  • M. Reza Dana
Original paper


Corneal transplantation is the oldest and the most common form of solid tissue transplantation in humans. Immunologic graft rejection is one of the main causes of short and long-term graft failure. Rejection involves donor tissue recognition and destruction by allo-specific immune cells of the recipient. This review outlines (1) the immunobiology of transplantation, with reference to ocular immune privilege, (2) factors that confer “high-risk” status to a graft and (3) the pathophysiologic mechanisms of corneal transplant rejection.


Allosensitization Corneal transplantation Immunobiology Immunologic graft rejection Ocular immune privilege Pathophysiologic mechanisms 



Anterior chamber-associated immune deviation


Antigen presenting cells


Alpha-melanocyte stimulating hormone


Conjunctival associated lymphoid tissue


Collaborative corneal transplantation studies


Cluster differentiation


Calcitonin-gene related peptide


Complement regulatory proteins


Cytotoxic T-lymphocyte-associated antigen 4 to human immunoglobulin


Decay accelerating factor


Dendritic cells


Delayed type hypersensitivity


Fas ligand


Human leukocyte antigen


Intercellular adhesion molecule


Indoleamine dioxygenase


Inducible nitric oxide synthase




Interleukin 10




Langerhans cells


Lymphatic endothelium-specific hyaluronan receptor


Major histocompatibility complex


Macrophage inhibitory factor


Macrophage inflammatory protein


Natural Killer T cells


Programmed death ligand


Regulated on activation normal T cell expressed and secreted




T cell receptors


Transforming growth factor-β


Tumor necrosis factor


Vascular endothelial growth factor


Vasoactive intestinal peptide



This work is supported by a grant (RO1-12963) from the National Institutes of Health, awarded to Dr Dana.


  1. 1.
    Zirm EK (1906) Eine erfolgreiche totale keratoplastik. Arch Fr Ophthalmol 64:580–593CrossRefGoogle Scholar
  2. 2.
    Frequently asked questions (2006) Available at: Accessed 20 June 2006
  3. 3.
    Coster DJ, Williams KA (2005) The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am J Ophthalmol 140:1112–1122PubMedCrossRefGoogle Scholar
  4. 4.
    Price FW Jr, Whitson WE, Collins KS, Marks RG (1993) Five-year corneal graft survival. A large, single-center patient cohort. Arch Ophthalmol 111:799–805PubMedGoogle Scholar
  5. 5.
    Port FK, Dykstra DM, Merion RM, Wolfe RA (2005) Trends and results for organ donation and transplantation in the United States, 2004. Am J Transplant 5:843–849PubMedCrossRefGoogle Scholar
  6. 6.
    Kuchle M, Cursiefen C, Nguyen NX et al (2002) Risk factors for corneal allograft rejection: intermediate results of a prospective normal-risk keratoplasty study. Graefes Arch Clin Exp Ophthalmol 240:580–584PubMedCrossRefGoogle Scholar
  7. 7.
    Streilein JW, Yamada J, Dana MR, Ksander BR (1999) Anterior chamber-associated immune deviation, ocular immune privilege, and orthotopic corneal allografts. Transplant Proc 31:1472–1475PubMedCrossRefGoogle Scholar
  8. 8.
    Thompson RW, Price MO, Bowers PJ, Price FW (2003) Long-term graft survival after penetrating keratoplasty. Ophthalmology 110:1396–1402PubMedCrossRefGoogle Scholar
  9. 9.
    Ing JJ, Ing HH, Nelson LR et al (1998) Ten-year postoperative results of penetrating keratoplasty. Ophthalmology 105:1855–1865PubMedCrossRefGoogle Scholar
  10. 10.
    Inoue K, Amano S, Oshika T et al (2000) A 10-year review of penetrating keratoplasty. Jpn J Ophthalmol 44:139–145PubMedCrossRefGoogle Scholar
  11. 11.
    Williams KA, Muehlberg SM, Bartlett CM et al. (2000) The Australian Corneal graft Registry:1999 Report. Adelaide, Snap PrintingGoogle Scholar
  12. 12.
    MHC consortium (1999) Complete sequence and gene map of a human major histo-compatability complex. The MHC sequencing consortium. Nature 401:921–923Google Scholar
  13. 13.
    Khodadoust AA, Silverstein AM (1969) Transplantation and rejection of individual cell layers of the cornea. Invest Ophthalmol 8:180–195PubMedGoogle Scholar
  14. 14.
    Khodadoust AA, Silverstein AM (1972) Studies on the nature of the privilege enjoyed by corneal allografts. Invest Ophthalmol 11:137–148PubMedGoogle Scholar
  15. 15.
    Niederkorn JY (2001) Mechanisms of corneal graft rejection: the sixth annual Thygeson Lecture. Presented at the Ocular Microbiology and Immunology Group Meeting, October 21,2000. Cornea 20:675–679PubMedCrossRefGoogle Scholar
  16. 16.
    Osawa H, Streilein JW (2005) MHC class I and II antigens as targets of rejection in penetrating keratoplasty in low- and high-risk mouse eyes. Cornea 24:312–318PubMedCrossRefGoogle Scholar
  17. 17.
    The collaborative corneal transplantation studies (CCTS) (1992) Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch Ophthalmol 110:1392–1403Google Scholar
  18. 18.
    Boisjoly HM, Roy R, Bernard PM et al (1990) Association between corneal allograft reactions and HLA compatibility. Ophthalmology 97:1689–1698PubMedGoogle Scholar
  19. 19.
    Sanfilippo F, MacQueen JM, Vaughn WK, Foulks GN (1986) Reduced graft rejection with good HLA-A and B matching in high-risk corneal transplantation. N Engl J Med 315:29–35PubMedCrossRefGoogle Scholar
  20. 20.
    Bartels MC, Doxiadis II, Colen TP, Beekhuis WH (2003) Long-term outcome in high-risk corneal transplantation and the influence of HLA-A and HLA-B matching. Cornea 22:552–526PubMedCrossRefGoogle Scholar
  21. 21.
    van Dooremaal IC (1873) Die Entwicklun der in fremden Grund versetzten lebenden Geweba. Graefes Arch Ophthalmol 19:358–373Google Scholar
  22. 22.
    Medawar PB (1948) Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29:58–69PubMedGoogle Scholar
  23. 23.
    Streilein JW (2003) Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3:879–889PubMedCrossRefGoogle Scholar
  24. 24.
    Streilein JW, Masli S, Takeuchi T, Kezuka T (2002) The eye’s view of antigen presentation. Hum Immunol 63:435–443PubMedCrossRefGoogle Scholar
  25. 25.
    Niederkorn JY (2003) The immune privilege of corneal grafts. J Leukoc Biol 74:167–171PubMedCrossRefGoogle Scholar
  26. 26.
    Williams KA, Coster DJ (1985) Penetrating corneal transplantation in the inbred rat: a new model. Invest Ophthalmol Vis Sci 26:23–30PubMedGoogle Scholar
  27. 27.
    Niederkorn JY (2006) See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol 7:354–359PubMedCrossRefGoogle Scholar
  28. 28.
    Streilein JW (2003) New thoughts in the immunology of corneal transplantation. Eye 17:943–948PubMedCrossRefGoogle Scholar
  29. 29.
    Hori J, Streilein JW (2001) Role of recipient epithelium in promoting survival of orthotopic corneal allografts in mice. Invest Ophthalmol Vis Sci 42:720–726PubMedGoogle Scholar
  30. 30.
    Cursiefen C, Chen L, Saint-Geniez M et al (2006) Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci USA 103:11405–11410PubMedCrossRefGoogle Scholar
  31. 31.
    Dana MR, Streilein JW (1996) Loss and restoration of immune privilege in eyes with corneal neovascularization. Invest Ophthalmol Vis Sci 37:2485–2494PubMedGoogle Scholar
  32. 32.
    Maguire MG, Stark WJ, Gottsch JD et al (1994) Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies. Collaborative Corneal Transplantation Studies Research Group. Ophthalmology 101:1536–1547PubMedGoogle Scholar
  33. 33.
    Zhivov A, Stave J, Vollmar B, Guthoff R (2005) In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol 243:1056–1061PubMedCrossRefGoogle Scholar
  34. 34.
    Hamrah P, Zhang O, Liu Y, Dana MR (2002) Novel characterization of MHC class II-negative population of resident corneal Langerhans cell-type dendritic cells. Invest Ophthalmol Vis Sci 43:639–646PubMedGoogle Scholar
  35. 35.
    Hori J, Wang M, Miyashita M, Tanemoto K, Takahashi H, Takemori T, Okumura K, Yagita H, Azuma M (2006) B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. J Immunol 177:5928–5935PubMedGoogle Scholar
  36. 36.
    Huq S, Liu Y, Benichou G, Dana MR (2004) Relevance of the direct pathway of sensitization in corneal transplantation is dictated by graft bed microenvironment. J Immunol 173:4464–4469PubMedGoogle Scholar
  37. 37.
    Simon M, Fellner P, El-Shabrawi Y, Ardjomand N (2004) Influence of donor storage time on corneal allograft survival. Ophthalmology 11:1534–1538CrossRefGoogle Scholar
  38. 38.
    He YG, Niederkorn JY (1996) Depletion of donor-derived Langerhans cells promotes corneal allograft survival. Cornea 15:82–89PubMedCrossRefGoogle Scholar
  39. 39.
    Hamrah P, Liu Y, Zhang Q, Dana MR (2003) The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci 44:581–589PubMedCrossRefGoogle Scholar
  40. 40.
    Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258PubMedCrossRefGoogle Scholar
  41. 41.
    Hamrah P, Liu Y, Zhang Q, Dana MR (2003) Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch Ophthalmol 121:1132–1140, Erratum in: Arch Ophthalmol 121:1555PubMedCrossRefGoogle Scholar
  42. 42.
    Gong N, Pleyer U, Yang J, Vogt K et al (2006) Influence of local and systemic CTLA2Ig gene transfer on corneal allograft survival. J Gene Med 8:456–467CrossRefGoogle Scholar
  43. 43.
    Yamagami S, Miyazaki D, Ono SF, Dana MR (1999) Differential chemokine gene expression in corneal transplant rejection. Invest Ophthalmol Vis Sci 40:2892–2897PubMedGoogle Scholar
  44. 44.
    Jin Y, Shen L, Chen L et al (2005) Expression of CCR7 by corneal antigen-presenting cells in inflammation. ARVO Abstr 2810/B363Google Scholar
  45. 45.
    Cursiefen C, Cao J, Chen L et al (2004) Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci 45:2666–2673PubMedCrossRefGoogle Scholar
  46. 46.
    Cursiefen C, Maruyama K, Jackson DG et al (2006) Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea 25:443–447PubMedCrossRefGoogle Scholar
  47. 47.
    Cursiefen C, Chen L, Dana MR, Streilein JW (2003) Corneal lymphangiogenesis: evidence, mechanisms, and implications for corneal transplant immunology. Cornea 22:273–281PubMedCrossRefGoogle Scholar
  48. 48.
    Allansmith MR, McClellan BH (1975) Immunoglobulins in the human cornea. Am J Ophthalmol 80:123–132PubMedGoogle Scholar
  49. 49.
    Mondino BJ, Brady KJ (1981) Distribution of hemolytic complement in the normal cornea. Arch Ophthalmol 99:1430–1434PubMedGoogle Scholar
  50. 50.
    Yamagami S, Dana MR (2001) The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest Ophthalmol Vis Sci 42:1293–1298PubMedGoogle Scholar
  51. 51.
    Yamagami S, Dana MR, Tsuru T (2002) Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk cornea transplantation. Cornea 21:405–409PubMedCrossRefGoogle Scholar
  52. 52.
    Niederkorn JY, Wang S (2005) Immune privilege of the eye and fetus: parallel universes?. Transplantation 80:1139–1144PubMedCrossRefGoogle Scholar
  53. 53.
    Chen L, Hamrah P, Cursiefen C et al (2004) Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat Med 10:813–815PubMedCrossRefGoogle Scholar
  54. 54.
    Streilein JW, Masli S, Takeuchi M, Kezuka T (2002) The eye’s view of antigen presentation. Hum Immunol 63:435–443PubMedCrossRefGoogle Scholar
  55. 55.
    Dana MR, Foster CS (2007) Regulation of immune response. In: Albert DM, Miller JW, Azar DT & Blodi BA (eds) Albert & Jakobiec’s principles and practice of ophthalmology, 3rd edn., section 2, chapter 10, Saunders Dec. 2007 Google Scholar
  56. 56.
    Streilein JW, Niederkorn JY (1981) Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J Exp Med 153:1058–1067PubMedCrossRefGoogle Scholar
  57. 57.
    Neiderkorn JY, Mellon J (1996) Anterior-chamber associated immune deviation promotes corneal allograft survival. Invest Ophthalmol Vis Sci 37:2700–2707Google Scholar
  58. 58.
    Niederkorn JY (2006) See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol 7:354–359PubMedCrossRefGoogle Scholar
  59. 59.
    Niederkorn JY (2002) Immune Privilege in the anterior chamber of the eye. Crit Rev Immunol 22:13–46PubMedGoogle Scholar
  60. 60.
    Cardell SL (2006) The natural killer T lymphocyte: a player in the complex regulation of autoimmune diabetes in nonobese diabetic mice. Clin Exp Immunol 143:194–202PubMedCrossRefGoogle Scholar
  61. 61.
    Hargrave SL, Mayhew E, Hegde S, Niederkorn J (2003) Are corneal cells susceptible to antibody-mediated killing in corneal allograft rejection?. Transplant Immunol 11:79–89CrossRefGoogle Scholar
  62. 62.
    Hegde S, Beauregard C, Mayhew E, Niederkorn JY (2005) CD4 (+) T-cell-mediated mechanisms of corneal allograft rejection: role of Fas-induced apoptosis. Transplantation 79:23–31PubMedCrossRefGoogle Scholar
  63. 63.
    Niederkorn JY, Stevens C, Mellon J, Mayhew E (2006) Differential roles of CD 8 and CD 8 T lymphocytes in corneal allograft rejection in ‘high-risk’ hosts. Am J Transplant 6:705–713PubMedCrossRefGoogle Scholar
  64. 64.
    Stuart PM, Griffith TS, Usui N et al (1997) CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99:396–402PubMedCrossRefGoogle Scholar
  65. 65.
    Stuart PM, Pan F, Plambeck S, Ferguson TA (2003) FasL–Fas interactions regulate neovascularization in the cornea. Invest Ophthalmol Vis Sci 44:93–98PubMedCrossRefGoogle Scholar
  66. 66.
    Yamagami S, Kawashima H, Tsuru T et al (1997) Role of Fas-Fas ligand interactions in the immunorejection of allogeneic mouse corneal transplants. Transplantation 64:1107–1111PubMedCrossRefGoogle Scholar
  67. 67.
    Stuart PM, Pan F, Yin X et al (2004) Effect of metalloprotease inhibitors on corneal allograft survival. Invest Ophthalmol Vis Sci 45:1169–1173PubMedCrossRefGoogle Scholar
  68. 68.
    Jeng BH, Meisler DM, Hollyfield JG et al (2002) Nitric oxide generated by corneas in corneal storage media. Cornea 21:410–414PubMedCrossRefGoogle Scholar
  69. 69.
    Sagoo P, Chan G, Larkin DF, George AJ (2004) Inflammatory cytokines induce apoptosis of corneal endothelium through nitric oxide. Invest Ophthalmol Vis Sci 45:3964–3973PubMedCrossRefGoogle Scholar
  70. 70.
    Strestikova M, Plskova J, Filipec M, Farghali H (2003) FK 506 and aminoguanidine suppress iNOS induction in orthotopic corneal allografts and prolong graft survival in mice. Nitric Oxide 9:111–117PubMedCrossRefGoogle Scholar
  71. 71.
    Beauregard C, Huq SO, Barabino S et al (2006) Keratocyte apoptosis and failure of corneal allografts. Transplantation 81:1–6CrossRefGoogle Scholar
  72. 72.
    Qian Y, Dekaris J, Yamagami S, Dana MR (2000) Topical soluble tumor necrosis factor receptor type I suppresses ocular chemokine gene expression and rejection of allogeneic corneal transplants. Arch Ophthalmol 118:1666–1671PubMedGoogle Scholar
  73. 73.
    Yamada J, Dana MR, Zhu SN et al (1998) Interleukin 1 receptor antagonist suppresses allosensitization in corneal transplantation. Arch Ophthalmol 116:1351–1357PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Cornea Service, Massachusetts Eye and Ear Infirmary and Department of OphthalmologyHarvard Medical SchoolBostonUSA

Personalised recommendations