Information Retrieval

, Volume 13, Issue 1, pp 1–21 | Cite as

Filtering methods for content-based retrieval on indexed symbolic music databases

  • Kjell LemströmEmail author
  • Niko Mikkilä
  • Veli Mäkinen


We introduce fast filtering methods for content-based music retrieval problems, where the music is modeled as sets of points in the Euclidean plane, formed by the (on-set time, pitch) pairs. The filters exploit a precomputed index for the database, and run in time dependent on the query length and intermediate output sizes of the filters, being almost independent of the database size. With a quadratic size index, the filters are provably lossless for general point sets of this kind. In the context of music, the search space can be narrowed down, which enables the use of a linear sized index for effective and efficient lossless filtering. For the checking phase, which dominates the overall running time, we exploit previously designed algorithms suitable for local checking. In our experiments on a music database, our best filter-based methods performed several orders of a magnitude faster than the previously designed solutions.


Content-based retrieval Symbolically encoded polyphonic music Filtering Indexing 



We thank MSc Ben Sach from University of Bristol and Dr. Kimmo Fredriksson from University of Kuopio for providing us their implementations of the MsM and Fg6 algorithms, respectively.


  1. Barequet, G., & Har-Peled, S. (2001). Polygon containment and translational min-hausdorff-distance between segment sets are 3SUM-hard. The International Journal of Computational Geometry and Applications, 11(4), 465–474.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Clausen, M., Engelbrecht, R., Meyer, D., & Schmitz, J. (2000). Proms: A web-based tool for searching in polyphonic music. In Proceedings of ISMIR’00, Plymouth.Google Scholar
  3. Clifford, R., Christodoulakis, M., Crawford, T., Meredith, D., & Wiggins, G. (2006). A fast, randomised, maximal subset matching algorithm for document-level music retrieval. In Proceedings of ISMIR’06 (pp. 150–155), Victoria.Google Scholar
  4. Crochemore, M., Iliopoulos, C., Makris, C., Rytter, W., Tsakalidis, A., & Tsichlas, K. (2002). Approximate string matching with gaps. Nordic Journal of Computing, 9(1), 54–65.zbMATHMathSciNetGoogle Scholar
  5. Fredriksson, K., & Grabowski, Sz. (2008). Efficient algorithms for pattern matching with general gaps, character classes and transposition invariance. Information Retrieval, 11(4), 335–357.CrossRefGoogle Scholar
  6. Fredriksson, K., Mäkinen, V., & Navarro, G. (2006). Flexible music retrieval in sublinear time. International Journal of Foundations of Computer Science (IJFCS), 17(6), 1345–1364.zbMATHCrossRefGoogle Scholar
  7. Ghias, A., Logan, J., Chamberlin, D., & Smith, B. (1995). Query by humming—musical information retrieval in an audio database. In Proceedings of ACM multimedia (pp. 231–236), San Francisco.Google Scholar
  8. Lemström, K., & Pienimäki, A. (2007). On comparing edit distance and geometric frameworks in content-based retrieval of symbolically encoded polyphonic music. Musicae Scientiae, 4a, 135–152 (discussion forum)Google Scholar
  9. Lubiw, A., & Tanur, L. (2004). Pattern matching in polyphonic music as a weighted geometric translation problem. In Proceedings of ISMIR’04 (pp. 289–296), Barcelona.Google Scholar
  10. Mäkinen, V., Navarro, G., & Ukkonen, E. (2005). Transposition invariant string matching. Journal of Algorithms, 56(2), 124–153.zbMATHCrossRefMathSciNetGoogle Scholar
  11. Mongeau, M., & Sankoff, D. (1990). Comparison of musical sequences. Computers and the Humanities, 24, 161–175.CrossRefGoogle Scholar
  12. Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing Survey, 33(1), 31–88.CrossRefGoogle Scholar
  13. Typke, R. (2007). Music retrieval based on melodic similarity. PhD thesis, Utrecht University.Google Scholar
  14. Uitdenbogerd, A., & Zobel, J. (1998). Manipulation of music for melody matching. In Proceedings of ACM multimedia (pp. 235–240), Bristol.Google Scholar
  15. Ukkonen, E., Lemström, K., & Mäkinen, V. (2003). Geometric algorithms for transposition invariant content-based music retrieval. In Proceedings of ISMIR’03 (pp. 193–199), Baltimore.Google Scholar
  16. Wiggins, G., Lemström, K., & Meredith, D. (2002). SIA(M)ESE: An algorithm for transposition invariant, polyphonic content-based music retrieval. In Proceedings of ISMIR’02 (pp. 283–284), Paris.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations