Information Retrieval

, Volume 11, Issue 4, pp 315–334 | Cite as

An outranking approach for information retrieval

Article

Abstract

Over the last three decades, research in Information Retrieval (IR) shows performance improvement when many sources of evidence are combined to produce a ranking of documents. Most current approaches assess document relevance by computing a single score which aggregates values of some attributes or criteria. They use analytic aggregation operators which either lead to a loss of valuable information, e.g., the min or lexicographic operators, or allow very bad scores on some criteria to be compensated with good ones, e.g., the weighted sum operator. Moreover, all these approaches do not handle imprecision of criterion scores. In this paper, we propose a multiple criteria framework using a new aggregation mechanism based on decision rules identifying positive and negative reasons for judging whether a document should get a better ranking than another. The resulting procedure also handles imprecision in criteria design. Experimental results are reported showing that the suggested method performs better than standard aggregation operators.

Keywords

Information retrieval Relevance Outranking approach Multiple criteria Aggregation 

References

  1. Amento, B., Terveen, L. G., & Hill, W. C. (2000). Does “authority” mean quality? predicting expert quality ratings of web documents. In N. J. Belkin, P. Ingwersen, & M. -K. Leong, (Eds.), SIGIR 2000: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 296–303). Athens, Greece, July 2000. ACM Press.Google Scholar
  2. Anh, V. N., & Moffat, A. (2002). Vector space ranking: Can we keep it simple? In ACDS 2002: Proceedings of the Seventh Australasian Document Computing Symposium, December 2002.Google Scholar
  3. Bordogna, G., & Pasi, G. (2004). A model for a soft fusion of information accesses on the web. Fuzzy Sets and Systems, 148, 105–118.CrossRefMathSciNetGoogle Scholar
  4. Bordogna, G., Pasi, G., & Yager, R. (2003). Soft approaches to distributed information retrieval. International Journal of Approximate Reasoning, 34, 105–120.MATHCrossRefMathSciNetGoogle Scholar
  5. Borlund, P. (2003). The concept of relevance in IR. Journal of the American Society for Information Science and Technology, 54(10), 913–925.CrossRefGoogle Scholar
  6. Boughanem, M., Loiseau, Y., & Prade, H. (2005). Rank-ordering documents according to their relevance in information retrieval using refinements of ordered-weighted aggregations. In M. Detyniecki, J. M. Jose, A. Nürnberger, & C. J. van Rijsbergen, (Eds.), Adaptive Multimedia Retrieval (Vol. 3877, pp. 44–54). Lecture Notes in Computer Science, Springer-Verlag.Google Scholar
  7. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks, 30(1–7), 107–117.Google Scholar
  8. Cao, G., Nie, J. -Y., & Bai, J. (2005). Integrating word relationships into language models. In R. A. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat & J. Tait, (Eds.), SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 298–305). Salvador, Brazil, August 2005. ACM Press.Google Scholar
  9. Craswell, N., & Hawking, D. (2004). Overview of the TREC-2004 Web Track. In Proceedings of TREC’2004.Google Scholar
  10. Craswell, N., Robertson, S. E., Zaragoza, H., & Taylor, M. J. (2005). Relevance weighting for query independent evidence. In R. A. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, & J. Tait, (Eds.), SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 416–423). Salvador, Brazil, August 2005. ACM Press.Google Scholar
  11. Dubois, D., & Prade, H. (1984). Criteria aggregation and ranking of alternatives in the framework of fuzzy set theory. In H. Zimmermann, L. Zadeh, & B. Gaines, (Eds.), Fuzzy sets and decision analysis (Vol. 20, pp. 209–240). TIMS Studies in the Management Sciences.Google Scholar
  12. Fang, H., Tao, T., & Zhai, C. (2004). A formal study of information retrieval heuristics. In M. Sanderson, K. Järvelin, J. Allan, & P. Bruza, (Eds.), SIGIR 2004: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 49–56). Sheffield, UK, July 2004. ACM Press.Google Scholar
  13. Fox, E. A., & Shaw, J. A. (1994). Combination of multiple searches. In Proceedings of TREC’3.Google Scholar
  14. Frakes, W., & Baeza-Yates, R. (1992). Information retrieval: Data structures and algorithms. Prentice Hall.Google Scholar
  15. Granka, L. A., Joachims, T., & Gay, G. (2004). Eye-tracking analysis of user behavior in WWW search. In M. Sanderson, K. Järvelin, J. Allan, & P. Bruza, (Eds.), SIGIR 2004: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 478–479). Sheffield, UK, July 2004. ACM Press.Google Scholar
  16. Hawking, D., Craswell, N., Bailey, P., & Griffihs, K. (2001). Measuring search engine quality. Information Retrieval, 4(1), 33–59.MATHCrossRefGoogle Scholar
  17. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of ACM, 46(5), 604–632.MATHCrossRefMathSciNetGoogle Scholar
  18. Kraaij, W., Westerveld, T., & Hiemstra, D. (2002). The importance of prior probabilities for entry page search. In SIGIR 2002: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 27–34). Tampere, Finland, August 2002. ACM Press.Google Scholar
  19. Leclercq, J. P. (1984). Propositions d’extensions de la notion de dominance en présence de relation d’ordre sur les pseudo-critères. Revue Belge de Recherche Opérationnelle, de Statistiques et d’informatique, 24, 32–46.MATHGoogle Scholar
  20. Pasi, G., Bordogna, G., & Villa, R. (2007). A multi-criteria content-based filtering system. In W. Kraaij, A. P. de Vries, C. L. A. Clarke, N. Fuhr, & N. Kando, (Eds.), SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 775–776). Amsterdam, The Netherlands, July 2007.Google Scholar
  21. Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M., & Gatford, M. (1994). Okapi at TREC-3. In Proceedings of TREC’3.Google Scholar
  22. Roy, B. (1989). Main sources of inaccurate determination, uncertainty and imprecision. Mathematical and Computer Modelling, 12(10–11), 1245–1254.CrossRefGoogle Scholar
  23. Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31, 49–73.CrossRefMathSciNetGoogle Scholar
  24. Roy, B., & Hugonnard, J. (1982). Ranking of suburban line extension projects on the Paris metro system by a multicriteria method. Transportation Research, 16A(4), 301–312.Google Scholar
  25. Salton, G., Fox, E. A., & Wu, H. (1983). Extended boolean information retrieval. Communications of the ACM, 26(11), 1022–1036.MATHCrossRefMathSciNetGoogle Scholar
  26. Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. McGraw-Hill.Google Scholar
  27. Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620.MATHCrossRefGoogle Scholar
  28. Sanderson, M., & Zobel, J. (2005). Information retrieval system evaluation: Effort, sensitivity, and reliability. In R. A. Baeza-Yates, N. Ziviani, G. Marchionini, A. Moffat, & J. Tait, (Eds.), SIGIR 2005: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 162–169). Salvador, Brazil, August 2005. ACM Press.Google Scholar
  29. Savoy, J., & Rasolofo, Y. (2000). Report on the TREC-9 experiment: Link-based retrieval and distributed collections. In Proceedings of TREC’9.Google Scholar
  30. Van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). Dept. of Computer Science, University of Glasgow, London: Butterworths.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Lamsade, Université Paris-DauphineParisFrance
  2. 2.Riadi, Faculté des Sciences de MonastirMonastirTunisia

Personalised recommendations