Advertisement

Information Retrieval

, Volume 11, Issue 1, pp 51–75 | Cite as

Nearest-biclusters collaborative filtering based on constant and coherent values

  • Panagiotis Symeonidis
  • Alexandros Nanopoulos
  • Apostolos N. Papadopoulos
  • Yannis Manolopoulos
Article

Abstract

Collaborative Filtering (CF) Systems have been studied extensively for more than a decade to confront the “information overload” problem. Nearest-neighbor CF is based either on similarities between users or between items, to form a neighborhood of users or items, respectively. Recent research has tried to combine the two aforementioned approaches to improve effectiveness. Traditional clustering approaches (k-means or hierarchical clustering) has been also used to speed up the recommendation process. In this paper, we use biclustering to disclose this duality between users and items, by grouping them in both dimensions simultaneously. We propose a novel nearest-biclusters algorithm, which uses a new similarity measure that achieves partial matching of users’ preferences. We apply nearest-biclusters in combination with two different types of biclustering algorithms—Bimax and xMotif—for constant and coherent biclustering, respectively. Extensive performance evaluation results in three real-life data sets are provided, which show that the proposed method improves substantially the performance of the CF process.

Keywords

Nearest neighbor Collaborative filtering Biclustering Clustering 

References

  1. Balabanovic, M., & Fab, S. Y. (1997). Content-based, collaborative recommendation. ACM Communications, 40(3), 66–72.CrossRefGoogle Scholar
  2. Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P., & Zitzler, E. (2006). BicAT: A biclustering analysis toolbox. Bioinformatics, 22(10), 1282–1283.Google Scholar
  3. Breese, J., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Uncertainty in Artificial Intelligence Conference (pp. 43–52).Google Scholar
  4. Cheng, Y., & Church, G. (2000). Biclustering of expression data. In Proceedings of the ISMB Conference (pp. 93–103).Google Scholar
  5. Deshpande, M., & Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM Transactions on Information Systems, 22(1), 143–177.CrossRefGoogle Scholar
  6. Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the ACM SIGKDD Conference.Google Scholar
  7. Dhillon, I. S., & Mallela, D. S., & Modha, S. (2003). Information theoretic co-clustering. In Proceedings of the ACM SIGKDD Conference.Google Scholar
  8. George, T., & Merugu, S. (2005). A scalable collaborative filtering framework based on co-clustering. In Proceedings of the IEEE ICDM Conference.Google Scholar
  9. Hartigan, J. A. (1972). Direct clustering of a data matrix. Journal of the American Statistical Association, 67(337), 123–129.CrossRefGoogle Scholar
  10. Herlocker, J., Konstan, J., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In Proceedings of the ACM SIGIR Conference (pp. 230–237).Google Scholar
  11. Herlocker, J., Konstan, J., & Riedl, J. (2002). An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information Retrieval, 5(4), 287–310.CrossRefGoogle Scholar
  12. Herlocker, J., Konstan, J., Terveen, L., & Riedl, J. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1), 5–53.CrossRefGoogle Scholar
  13. Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22(1), 89–115.CrossRefGoogle Scholar
  14. Hofmann, T., & Puzicha, J. (1999). Latent class models for collaborative filtering. In Proceedings of the IJCAI Conference.Google Scholar
  15. Jin, R., Si, L., & Zhai, C. (2006). A study of mixture models for collaborative filtering. Information Retrieval, 9(3), 357–382.CrossRefGoogle Scholar
  16. Karypis, G. (2001). Evaluation of item-based top-n recommendation algorithms. In Proceedings of the ACM CIKM Conference (pp. 247–254).Google Scholar
  17. Kohrs, A., & Merialdo, B. (1998). Clustering for collaborative filtering applications. In Proceedings of the CIMKA Conference.Google Scholar
  18. Lemire, D., & Maclachlan, A. (2005). Slope one predictors for online rating-based collaborative filtering. In Proceedings of SIAM Data Mining Conference.Google Scholar
  19. Long, B., Zhangm, Z., & Yu, P. S. (2005). A formal statistical approach to collaborative filtering. In Proceedings of the ACM SIGKDD Conference.Google Scholar
  20. Madeira, S., & Oliveira, A. (2004). Biclustering algorithms for biological data analysis: A survey. ACM Transactions on Computational Biology and Bioinformatics, 1, 24–45.CrossRefGoogle Scholar
  21. McLauglin, R., & Herlocher, J. (2004). A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In Proceedings of the ACM SIGIR Conference (pp. 329–336).Google Scholar
  22. Melville, P., Mooney, R. J., & Nagarajan, R. (2002). Content-boosted collaborative filtering for improved recommendations. In Proc. AAAI conf. (pp. 187–192).Google Scholar
  23. Mirkin, B. (1996). Mathematical classification and clustering. Kluwer Academic Publishers: Dordrecht.zbMATHGoogle Scholar
  24. Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2001). Improving the effectiveness of collaborative filtering on anonymous web usage data. In Proceedings of the Workshop Intelligent Techniques for Web Personalization (pp. 53–60).Google Scholar
  25. Murali, T., & Kasif, S. (2003). Extracting conserved gene expression motifs from gene expression data. In Proceedings of the Pacific Symposium on Biocompomputing Conference (Vol. 8, pp. 77–88).Google Scholar
  26. Prelic, A., et al. (2006). A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22(9), 1122–1129.Google Scholar
  27. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An open architecture for collaborative filtering on netnews. In Proceedings of the Computer Supported Collaborative Work Conference (pp. 175–186).Google Scholar
  28. Salter, J., & Antonopoulos, N. (2006). Cinemascreen recommender agent: Combining collaborative and content-based filtering. Intelligent Systems Magazine, 21(1), 35–41.Google Scholar
  29. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-commerce. In Proceedings of the ACM Electronic Commerce Conference (pp. 158–167).Google Scholar
  30. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the WWW Conference (pp. 285–295).Google Scholar
  31. Shafiei, M., & Milios, E. (2005). Model-based overlapping co-clustering. In Proceedings of the IEEE SDM Conference.Google Scholar
  32. Symeonidis, P., Nanopoulos, A., Papadopoulos, A., & Manolopoulos, Y. (2006). Collaborative filtering process in a whole new light. In Proc. IDEAS conf. (pp. 29–36).Google Scholar
  33. Ungar, L., & Foster, D. (1998). A formal statistical approach to collaborative filtering. In Proceedings of the CONALD Conference.Google Scholar
  34. Wang, J., Vries, A., & Reinders, M. (2006). Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In Proceedings of the SIGIR Conference (pp. 501–508).Google Scholar
  35. Xue, G., Lin, C., & Yang, Q., et al. (2005). Scalable collaborative filtering using cluster-based smoothing. In Proceedings of the ACM SIGIR Conference (pp. 114–121).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Panagiotis Symeonidis
    • 1
  • Alexandros Nanopoulos
    • 1
  • Apostolos N. Papadopoulos
    • 1
  • Yannis Manolopoulos
    • 1
  1. 1.Department of InformaticsAristotle UniversityThessalonikiGreece

Personalised recommendations