Inorganic Materials

, Volume 41, Issue 3, pp 303–307

Doping of optical fiber preforms via porous silica layer infiltration with salt solutions

  • V. F. Khopin
  • A. A. Umnikov
  • A. N. Gur’yanov
  • M. M. Bubnov
  • A. K. Senatorov
  • E. M. Dianov
Article

Abstract

A process is described for reproducible deposition of porous layers uniform along the preform axis, and the effect of the nature of the solvent on the infiltration of salt solutions into the porous layer is analyzed in relation to the fabrication of fiber preforms with controlled doping level. Data are presented on the variation of the retention volume in the porous layer with sintering temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    DiGiovanni, D.J. and Muendel, M.H., High-Power Fiber Lasers and Amplifiers, Opt. Photonics News, 1999, no. 1, pp. 26–30.Google Scholar
  2. 2.
    Ueda, K. and Liu, A., Future of High-Power Fiber Lasers, Laser Phys., 1998, vol. 8, no.3, pp. 774–781.Google Scholar
  3. 3.
    Kurkov, A.S., Dianov, E.M., Paramonov, V.M., et al., 1.43-µm Fiber Laser for Medical Applications, Proc. SPIE-Int. Soc. Opt. Eng., 2000, vol. 4083, pp. 127–130.Google Scholar
  4. 4.
    Nagel, S.R., MacChesney, J.B., and Walker, K., An Overview of the MCVD Process and Performance, IEEE Trans. Microwave Theory Tech., 1982, vol. 30, no.4, pp. 305–322.Google Scholar
  5. 5.
    Poole, S.B., Payne, D.N., and Fermann, M.E., Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions, Electron. Lett., 1985, vol. 21, no.17, pp. 737–738.Google Scholar
  6. 6.
    Bocko, P.L., Rare-Earth-Doped Fibers by the Outside Vapor Deposition Process, OFC 1989, Tech. Dig., 1989, p. 20.Google Scholar
  7. 7.
    Tumminelli, R.P., McCollum, B.C., and Snitzer, E., Fabrication of High-Concentration Rare-Earth Doped Optical Fibers Using Chelates, J. Lightwave Technol., 1990, vol. 8, no.11, pp. 1680–1683.Google Scholar
  8. 8.
    Stone, J. and Burrus, C.A., Neodymium-Doped Silica Lasers in End-Pumped Fiber Geometry, Appl. Phys. Lett., 1973, vol. 23, no.7, pp. 388–389.Google Scholar
  9. 9.
    Townsend, J.E., Poole, S.B., and Payne, D.N., Solution-Doping Technique for Fabrication of Rare-Earth-Doped Optical Fibres, Electron. Lett., 1987, vol. 23, no.7, pp. 329–331.Google Scholar
  10. 10.
    Ainslie, B.J., A Review of the Fabrication and Properties of Erbium-Doped Fibers for Optical Amplifiers, J. Lightwave Technol., 1991, vol. 9, no.2, pp. 220–227.Google Scholar
  11. 11.
    Gur’yanov, A.N. and Devyatykh, G.G., Fabrication of High-Purity Silica Optical Fibers by the Inside Deposition Process, Vysokochist. Veshchestva, 1990, no. 4, pp. 18–30.Google Scholar
  12. 12.
    Dvoirin, V.V., Dianov, E.M., Mashinskii, V.M., et al., Absorption and Luminescent Properties of Cr4+-Doped Silica Optical Fibers, Kvantovaya Elektron. (Moscow), 2001, vol. 31, no.11, pp. 996–998.Google Scholar
  13. 13.
    Wood, D.L., Walker, K.L., MacChesney, J.B., et. al., Germanium Chemistry in the MCVD Process for Optical Fiber Fabrication, J. Lightwave Technol., 1987, vol. 5, no.2, pp. 277–285.CrossRefGoogle Scholar
  14. 14.
    Huang, Y.Y., Sarkar, A., and Schultz, P.C., Relationship between Composition, Density, and Refractive Index in Germania Silica Glasses, J. Non-Cryst. Solids, 1978, vol. 27, pp. 29–37.Google Scholar
  15. 15.
    Kirchhof, J., Unger, S., Grau, L., et al., A New MCVD Technique for Increased Efficiency of Dopant Incorporation in Optical Fibre Fabrication, Cryst. Res. Technol., 1990, vol. 25, no.2, pp. 29–34.Google Scholar
  16. 16.
    Vienne, G.G., Caplen, J.E., Dong, L., et al., Fabrication and Characterization of Yb3+: Er3+ Phosphosilicate Fibers for Lasers, J. Lightwave Technol., 1998, vol. 16, no.11, pp. 1990–2001.Google Scholar
  17. 17.
    Kasik, I., Matejec, V., Pospisilova, M., et al., Silica Optical Fibers with Yb3+ and Er3+, Proc. SPIE-Int. Soc. Opt. Eng., 1996, vol. 2777, pp. 71–79.Google Scholar
  18. 18.
    Simpkins, P.G., Greenberg-Kosinski, S., MacChesney, J.B., Thermophoresis: The Mass Transfer Mechanism in Modified Chemical Vapor Deposition, J. Appl. Phys., 1979, vol. 50, no.9, pp. 5676–5681.Google Scholar
  19. 19.
    Scherer, G.W., Sintering of Low-Density Glasses: I. Theory, J. Am. Ceram. Soc., 1977, vol. 60, no.5/6, pp. 236–239.Google Scholar
  20. 20.
    Azbel’, A.Yu., Vasil’ev, V.N., and Khoruzhnikov, S.E., Sintering Processes in Fiber Preform Fabrication, Fiz. Khim. Stekla, 1988, vol. 14, no.5, pp. 749–757.Google Scholar
  21. 21.
    Rahaman, M.N., DeJonghe, L.C., Scherer, G.W., and Brook, R.J., Creep and Densification during Sintering of Glass Powder Compacts, J. Am. Ceram. Soc., 1987, vol. 70, no.10, pp. 766–774.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. F. Khopin
    • 1
  • A. A. Umnikov
    • 1
  • A. N. Gur’yanov
    • 1
  • M. M. Bubnov
    • 2
  • A. K. Senatorov
    • 2
  • E. M. Dianov
    • 2
  1. 1.Institute of Chemistry of High-Purity SubstancesRussian Academy of SciencesNizhni NovgorodRussia
  2. 2.Fiber Optics Research Center, Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations