InflammoPharmacology

, Volume 7, Issue 1, pp 47–62 | Cite as

PADMA-28, a traditional tibetan herbal preparation inhibits the respiratory burst in human neutrophils, the killing of epithelial cells by mixtures of oxidants and pro-inflammatory agonists and peroxidation of lipids

  • Isaac Ginsburg
  • Milu Sadovnik
  • Sarah Sallon
  • Ilana Milo-Goldzweig
  • Raphael Mechoulam
  • Aviva Breuer
  • Douglas Gibbs
  • James Varani
  • Stanley Roberts
  • Edward Cleator
  • Neirmal Singh
Article

Abstract

Both aqueous and methanolic fractions derived from the Tibetan preparation PADMA-28 (a mixture of 22 plants) used as an anti-atherosclerotic agent, and which is non-cytolytic to a variety of mammalian cells, were found to strongly inhibit (1) the killing of epithelial cells in culture induced by ‘cocktails’ comprising oxidants, membrane perforating agents and proteinases; (2) the generation of luminol-dependent chemiluminescence in human neutrophils stimulated by opsonized bacteria; (3) the peroxidation of intralipid (a preparation rich in phopholipids) induced in the presence of copper; and (4) the activity of neutrophil elastase. It is proposed that PADMA-28 might prove beneficial for the prevention of cell damage induced by synergism among pro-inflammatory agonists which is central in the initiation of tissue destruction in inflammatory and infectious conditions.

Key words:

oxidative stress anti-oxidants cytolytic cocktail herbal preparation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu, H., Komura, J., Asada, Y., Niwa, Y. (1991). Mechanism of anti-inflammatory action of glycyrrhizin: Effect on neutrophil functions, including reactive oxygen species generation, Planta Medica 57, 119–121.PubMedCrossRefGoogle Scholar
  2. Ames, B. N. (1993). Oxidants, antioxidants and the degenerative diseases of aging, J. Natl Acad. Sci. 90 (17), 5912–5914.Google Scholar
  3. Arouma, L., Okezie, I., Spencer, J., Jeremy, P. E., Butler, J. and Halliwell, B. (1995). Reaction of plant-derived and synthetic antioxidants with trichloromethylperoxyl radicals, Free Rad. Res. 22, 187–190.Google Scholar
  4. Asamarai, A., Addis, P. B., Epley, R. J. and Kirk, T. P. (1996). Wild rice hull antioxidants, J. Agric. Food Chem. 44, 126–130.CrossRefGoogle Scholar
  5. Babior, B. M. (1984). Oxidants from phagocytes: Agents of defense and destruction, Blood 64, 966–998.Google Scholar
  6. Baumann, J., Von Bruchhausen, F. and Wurm, G. (1980). Flavenoids and related compounds as inhibitors of arachidonic acid peroxidation, Prostaglandins 20, 627–639.PubMedCrossRefGoogle Scholar
  7. Buss, W. W., Kopp, D. E. and Middleton, E. J. (1984). Flavenoid modulation of human neutrophil function, J. Allergy Clin. Immunology 73, 801–809.CrossRefGoogle Scholar
  8. Cathcart, M.K., McNally, A. K., Morel, D. W. and Chislom III, G. M. (1989). Superoxide anion participation in human monocyte-mediated oxidation of low-density lipoprotein in conversion of low-density lipoproteins to a cytotoxin, J. Immunol. 142, 1963–1969.PubMedGoogle Scholar
  9. Drabaek, H., Mehlsen, J., Himmelstrup, H. and Winther, K. (1993). A botanical compound PADMA-28 increases walking distance in stable intermittent cluadication, Angiology 44, 863–867.PubMedCrossRefGoogle Scholar
  10. Gieldanovski, J.L., Dutkiewicz, J., Samacowiec, J. J. and Wojcicki, J. (1992). PADMA-28 modifies immunological functions in experimental atherosclerosis in rabbits, Arch. Immunol Then Exp. (Warsz.) 40, 291–295.Google Scholar
  11. Ginsburg, I., Borinski, R., Malamud, D., Sruckmayer, F. and Klimetzek, V. (1985). Chemiluminescence and Superoxide degeneration by leukocytes stimulated by bacteria: Role of polyarginine, polylysine, polyhistidine, cytochalasins and inflammatory exudates as modulators of the oxygen burst, Inflammation. 9, 245–271.PubMedCrossRefGoogle Scholar
  12. Ginsburg, I., Gibbs, D. F., Schuger, L., Johnson, K. J., Ryan, U. S. and Varani, J. (1989). Vascular endothelial cell killing by combination of membrane-active agents and hydrogen peroxide, Free Rad. Bio. Med. 7, 369–376.CrossRefGoogle Scholar
  13. Ginsburg, I., Misgav, R., Pinson, A., Varani, J. and Kohen, R. (1992). Synergism among oxidants, proteinases, phospholipases, microbial hemolysins, cationic proteins and cytokines, Inflammation. 16,519–538.PubMedCrossRefGoogle Scholar
  14. Ginsburg, I., Mitra, R. S., Jr., Gibbs, D. F., Varani, J. and Kohen, R. (1993). Killing of endothelial cells and the release of arachidonic acid: Synergistic effects among hydrogen peroxide, membrane- damaging agents, cationic substances and proteinases and the modulation by inhibitors, Inflammation. 17,295–319.PubMedCrossRefGoogle Scholar
  15. Ginsburg, I., Misgav, R., Gibbs, D. F., Varani, J. and Kohen, R. (1993). Chemiluminescence in activated human neutrophils: Role of buffers and scavengers, Inflammation. 17, 227–243.PubMedCrossRefGoogle Scholar
  16. Ginsburg, I. and Varani, J. (1993). Interaction of viable group A streptococci and hydrogen peroxide in killing of vascular endothelial cells, Free Rad. Biol. Med. 14, 495–500.PubMedCrossRefGoogle Scholar
  17. Ginsburg, I., Kohen, R. and Ligumsky, M. (1994). Ethanol synergizes with hydrogen peroxide, peroxyl radical and trypsin to kill epithelial cells in culture, Free Rad. Biol. Med. 16, 263–269.PubMedCrossRefGoogle Scholar
  18. Ginsburg, I. and Kohen, R. (1995a). Synergistic effects among oxidants, membrane-damaging agents, fatty acids, proteinases and xenobiotics: Killing of epithelial cells and the release of arachidonic acid, Inflammation. 19, 101–118.PubMedCrossRefGoogle Scholar
  19. Ginsburg, I. and Kohen, R. (1995b). Cell damage in inflammatory and infectious sites might involve a coordinated ‘cross-talk’ among oxidants, microbial hemolysins and amphiphiles, cationic proteins, phospholipases, fatty acids, proteinases and cytokines (An overview) Free Rad. Res. 22, 489–517.Google Scholar
  20. Greenspan, H. (1993). A potential for new therapies, Conference on oxidative stress in HIV/AIDS, pp. 1–37. Fogerty International Center NIH, Bethesda.Google Scholar
  21. Greenwald, R. A. (1993). Superoxide dismutase and catalase as therapeutic agents for human disease Free Rad. Biol. Med. 8, 201–209.CrossRefGoogle Scholar
  22. Gutteridge, J. M. C. (1993). Free radicals in disease processes: A compilation of cause and consequence Free Rad. Res. Comm. 19, 141–158.Google Scholar
  23. Halliwell, B. (1989). Current status, free radicals, reactive oxygen species and human disease: A critical evaluation with special reference to atherosclerosis, Brit. J. Exp. Pathol. 70, 737–757.Google Scholar
  24. Harris, J. W. (1992). Regulation of antioxidant enzymes, FASEB J 6, 2675–2683.PubMedGoogle Scholar
  25. Hermann, G. PADMA-28, a Tibetan folk remedy, Die Weltwoche 1990, July 10, No 29:1–3.Google Scholar
  26. Hope, W. C, Welton, A. F., Fielder-Nagy, C, Batul, A., Bernardo, C. and Coffey, J. W. (1983). In vitro inhibition of biosynthesis of slow reaching substance of anaphylaxis (SRS-A) and lipoxygenase activity by quercetin, Biochem. Pharmacol. 32, 367–371.PubMedCrossRefGoogle Scholar
  27. Hurlimann, F. A. (1987). Lamaistic formula for the treatment of periferal occlusive diseases, Swiss Med. Rev. 38, 1407–1409.Google Scholar
  28. Klebanoff, S. J. (1992). Oxygen metabolites from phagocytes in: Inflammaton, Basic Principles and Clinical Correlates, J. Gallin, I. M. Goldstein and R. Snyderman (Eds). Raven Press, New York.Google Scholar
  29. Knight, C. G., Willenbrock, F. and Murphy, G. (1992). A novel coumarin-labelled peptide for sensitive continuous assay of the matrix metalloproteinases, FEBS Lett. 269, 263–266.CrossRefGoogle Scholar
  30. Kosugi, H., Kato, T. and Kikugava, K. (1988). Formation of redpigment by a 2-step-2 thiobar- bituric acid reaction of alka-2-4-dienals — potential products of lipid peroxidation, Lipids 23, 1824–1831.CrossRefGoogle Scholar
  31. Kramer, R. E. (1985). Antioxidant in clove, J. Am. Oil. Chemical. Soc. 62, 111–113.CrossRefGoogle Scholar
  32. Lee, K. and Berenbaum, M. R. (1990). Defense of parsnip webworm against phototoxic furanocoumarins: role of antioxidant enzymes, J. Chem. Ecol. 16, 2451–2460.CrossRefGoogle Scholar
  33. Liu, J. and Mori, A. (1993). Antioxidant and pro-oxidant activities of p-hydroxybenzyl alcohol and vanillin. Effects on free radicals, brain peroxidation and degradation of benzoate, deoxyribose, amino acids and DNA, Neurophramacol. 32, 659–669.CrossRefGoogle Scholar
  34. Lucchesi, B. R., Werns, S. W. and Fantone, J. C. (1989). The role of neutrophils and free-radicals in ischemic myocardial injury, J. Mol. Cell. Cardiol. 21, 1241–1251.PubMedCrossRefGoogle Scholar
  35. Marvrov, I. and Gonchanernco, M. S. (1988). Membrane correcting role of antioxidants in complex PUVA-therapy of psoriasis, Stud. Piophys. 124, 143–152.Google Scholar
  36. Matzner, Y. and Sallon, S. (1995). The effect of PADMA-28 a traditional Tibetan herbal preparation, on human neutrophil function, J. Clin. Lab. Immunol. 46, 13–26.PubMedGoogle Scholar
  37. Naito, C. M., Kawamura, M. and Yamamoto, Y. (1993). Lipid peroxide as initiating factors of atherosclerosis, Ann. N. Y. head. Sci. 676, 27–45.CrossRefGoogle Scholar
  38. Nordmann, R., Ribier, C. and Rouch, H. (1992). Implication of free radical mechanisms in ethanolinduced cellular injury, Free Rad. Biol. Med. 12, 219–240.PubMedCrossRefGoogle Scholar
  39. Okuda, T., Yoshida, T. and Hatano, T. (1989). Eligitannins as active constituents of medicinal plants, Plant Medic. 55, 117–122.CrossRefGoogle Scholar
  40. Piper, H. M. (1990). Pathophysiology of Severe Ischemie Myocardial Injury. Kluwer Dordrecht, The Netherlands.Google Scholar
  41. Ross, R. (1993). The pathogenesis of atherosclerosis. A prospective for the 1990’s, Nature 362, 801–809.PubMedCrossRefGoogle Scholar
  42. Samchuwiec, L. and Wojcicki, J. (1987). Effect of PADMA-28 on lipid endoperoxides formation, Herba. Polonica 33, 219–222.Google Scholar
  43. Sardjiman, S. S., Reksohadiprodjo, M. S., Hakim, L., VanDer Groot, H. and Timmernman, H. (1997). l,5-diphenyl-3-ones and cyclic analogues as antioxidative agents: synthesis and structual relationship, Eur. J. Med. Chem. 32, 625–630.CrossRefGoogle Scholar
  44. Sogawa, S., Nihro, S., Ueda, H., Izumi, A., Miki, T., Matsumoto, H. and Satho, T. (1993). 3,4- dihydroxychalcones as potent 5-lipoxygenase and cyclooxygenase inhibitors, J. Med. Chem. 36, 3904–3909.PubMedCrossRefGoogle Scholar
  45. Soliman, M. A., El-Sawy, A. A., Fedel, H. M. and Osman, F. (1985). Effect of antioxidants on the volatiles of roasted sesame seeds, J. Agric. Food Chem. 33, 523–528.CrossRefGoogle Scholar
  46. Srivastau, K. C. and Malhotra, N. (1991). Acetyl eugenol a component of oil of cloves (syzygium aromatium) inhibits aggregation and alters arachidonic metabolism in human blood platelets, Prostaglandins, Leukotriens and Essential Fatty Acids. 42, 73–81.CrossRefGoogle Scholar
  47. Welton, A. F., Tobia, L. D., Fielder-Nagy, C, Anderson, W., Hope, W., Myers, K. and Coffey, J. W. (1986). Effects of flavenoids on arachidonic acid metabolism, in: Plant Flavenoids in Biology and Medicine — Biochemical Pharmacological and Structure-Activity Relationships, V. Cody, E.Middleton and J. B. Hardborne (Eds), pp. 231–242. Alan R Liss, New York, NY.Google Scholar
  48. Wren, P. C. (1988). Potters new cyclopaedia of botanical drugs and preparations, E. M. Williamson and F. J. Evans (Eds), pp. 163, 184–185. CW Daniel.Google Scholar
  49. Varani, J., Ginsburg, I., Schuger, L., Gibbs, D. F., Bromberg, J., Johnson, K. J., Ryan, U. S. and Ward, P. A. (1989). Endothelial cell killing by neutrophils; Synergistic interaction of oxygen products and proteinase, Amer. J. Path. 135, 435–438.PubMedGoogle Scholar
  50. Ward, P. A. and Varani, J. (1990). Mechanisms of neutrophil-mediated killing of endothelial cells, J.Leuk.Biol. 48, 97–102.Google Scholar
  51. Winther, K., Kharazmi, A., Himmelstrup, H., Drabaek, H. and Mehlsen, J. (1994). PADMA- 28, a botanical compound, decreases the oxidative burst response of monocytes, and improves fibrinolysis in patients with stable intermittent claudication, Fibrinolysis 8: Supplement. 2,47–49.CrossRefGoogle Scholar
  52. Zikmund, L., Brodilova, J. and Pospisit, J. (1973). Antioxidants and sabilizers XLII. Reaction of tert-butyl hydroperoxide with mononuclear and binuclear phenols, J. Polym. Sci. Polym. Symp. 40, 271–282.CrossRefGoogle Scholar

Copyright information

© VSP 1999

Authors and Affiliations

  • Isaac Ginsburg
    • 1
  • Milu Sadovnik
    • 1
  • Sarah Sallon
    • 2
  • Ilana Milo-Goldzweig
    • 3
  • Raphael Mechoulam
    • 3
  • Aviva Breuer
    • 3
  • Douglas Gibbs
    • 4
  • James Varani
    • 4
  • Stanley Roberts
    • 5
  • Edward Cleator
    • 5
  • Neirmal Singh
    • 5
  1. 1.Department of Oral BiologyHebrew University-Hadassah School of Dental medicineJerusalemIsrael
  2. 2.Natural Medicine Research UnitHadassah HospitalJerusalemIsrael
  3. 3.Department of Natural ProductsSchool of Pharmacy, Faculty of MedicineJerusalemIsrael
  4. 4.Department ofPathologyThe University of MichiganAnn ArborUSA
  5. 5.Department of ChemistryUniversity of LiverpoolUK

Personalised recommendations