InflammoPharmacology

, Volume 5, Issue 3, pp 219–236 | Cite as

Dietary therapy with Lactobacillus GG, bovine colostrum or bovine immune colostrum in patients with juvenile chronic arthritis: Evaluation of effect on gut defence mechanisms

  • M. Malin
  • P. Verronen
  • H. Korhonen
  • E. -L. Syväoja
  • S. Salminen
  • H. Mykkänen
  • H. Arvilommi
  • E. Eerola
  • E. Isolauri
Article

Abstract

The effect of dietary therapy with a human Lactobacillus strain GG (ATCC 53103), bovine colostrum, or bovine immune colostrum with specific antibodies against anaerobic intestinal bacteria on gut defence mechanisms were studied in juvenile chronic arthritis. Thirty patients with juvenile chronic arthritis were randomly allocated to receive a freeze-dried powder of Lactobacillus GG, or bovine colostrum, or bovine immune colostrum, for a two-week period. Immunologic and non-immunologic gut defence mechanisms were indirectly investigated in blood and faecal samples. In patients receiving Lactobacillus GG, the median (interquartile range) frequency of immunoglobulin-secreting cells, determined by enzyme-linked immunospot assay, increased in the IgA class from 1840 (690–2530) to 3480 (1030–13 170)/106 cells; p=0.02. Likewise the median (interquartile range) frequency of specific antibody-secreting cells against dietary antigens increased during the Lactobacillus GG therapy in the IgM class from 3.8 (1.4–5.0) to 11.2 (5.0–30.0)/106 cells; p=0.02. In addition, Lactobacillus GG therapy decreased the median (interquartile range) activity of faecal urease, which has been associated with mucosal tissue damage, from 40.3 (21.7–54.3) to 28.6 (24.5–49.4) nmol. min−1 (mg protein)−1; p=0.10, while, in patients receiving bovine colostrum, faecal urease activity increased (from 42.2 to 80.6; p=0.04). All findings were transient. We suggest that gut defence mechanisms are disturbed in juvenile chronic arthritis and we further suggest that orally administered Lactobacillus GG has a potential to reinforce the mucosal barrier mechanisms in juvenile chronic arthritis.

Keywords

Diet Juvenile chronic arthritis Mucosal barrier 

Abbreviations

ELISPOT

solid-phase enzyme-linked immunospot assay

GLC

gas-liquid chromatography

Ig

immunoglobulin

IQR

interquartile range

ISC

immunoglobulin-secreting cells

JCA

juvenile chronic arthritis

Lactobacillus GG

Lactobacillus strain GG (ATCC 53103)

NSAID

nonsteroidal anti-inflammatory drug

sASC

specific antibody-secreting cells

TNF-α

tumour necrosis factor-α

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neumann V, Wright V. Arthritis associated with bowel disease. Clin Gastroenterol. 1983;12:767–95.PubMedGoogle Scholar
  2. 2.
    Schorr-Lesnick B, Brandt LJ. Selected rheumatologic and dermatologic manifestations of inflammatory bowel disease. Am J Gastroenterol. 1988;83:216–23.PubMedGoogle Scholar
  3. 3.
    Darlington LG, Ramsey NW, Mansfield JR. Placebo-controlled, blind study of dietary manipulation therapy in rheumatoid arthritis. Lancet. 1986;i:236–8CrossRefGoogle Scholar
  4. 4.
    Panush RS. Food induced (“allergic”) arthritis: clinical and serologic studies. J Rheumatol. 1990;17:291–4.PubMedGoogle Scholar
  5. 5.
    Kjeldsen-Kragh J, Haughen M, Borchgrevink CF et al. Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. Lancet. 1991;338:899–902.PubMedCrossRefGoogle Scholar
  6. 6.
    van de Laar MAFJ, van der Korst JK. Food intolerance in rheumatoid arthritis. I. A. double blind, controlled trial of the clinical effects of elimination of milk allergens and azo dyes. Ann Rheum Dis. 1992;51:298–302.PubMedCrossRefGoogle Scholar
  7. 7.
    Shinebaum R, Neumann VC, Cook EM, Wright V. Comparison of faecal florae in patients with rheumatoid arthritis and controls. Br J Rheumatol. 1987;26:329–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Eerola E, Möttönen T, Hannonen P et al. Intestinal flora in early rheumatoid arthritis. Br J Rheumatol. 1994;33:1030–8PubMedCrossRefGoogle Scholar
  9. 9.
    Marcolongo R, Bayeli PF, Montagnani IM. Gastrointestinal involvement in rheumatoid arthritis: a biopsy study. J Rheumatol. 1979;6:163–73.PubMedGoogle Scholar
  10. 10.
    Mielants H, Veys EM, Joos R, Cuvelier C, De Vos M, Proot F. Late onset pauciarticular juvenile chronic arthritis: relation to gut inflammation. J Rheumatol. 1987;14:459–65.PubMedGoogle Scholar
  11. 11.
    Sundqvist T, Lindström F, Magnusson K-E, Sköldstam L, Stjernström I, Tagesson C. Influence of fasting on intestinal permeability and disease activity in patients with rheumatoid arthritis. Scand J Rheumatol. 1982;11:33–8.PubMedGoogle Scholar
  12. 12.
    Smith MD, Gibson RA, Brooks PM. Abnormal bowel permeability in ankylosing spondylitis and rheumatoid arthritis. J Rheumatol. 1985;12:299–305.PubMedGoogle Scholar
  13. 13.
    Jenkins RT, Rooney PJ, Jones DB, Bienenstock KJ, Goodcare RL. Increased intestinal permeability in patients with rheumatoid arthritis: a side effect of oral nonsteroidal anti-inflammatory drug therapy? Br J Rheumatol. 1987;26:103–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Israel EJ, Walker WA. Host defence development in gut and related disorders. Pediatr Clin N Am. 1988;35:1–15.Google Scholar
  15. 15.
    Sarker SA, Gyr K. Non-immunological defence mechanisms of the gut. Gut 1992;33:987–93.PubMedGoogle Scholar
  16. 16.
    Brandtzaeg P, Halstensen TS, Kett K et al. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterology. 1989;97:1562–84.PubMedGoogle Scholar
  17. 17.
    Gray JDA, Shiner M. Influence of gastric pH on gastric and jejunal flora. Gut. 1967;8:574–81.PubMedGoogle Scholar
  18. 18.
    Simon GL, Gorbach SL. The human intestinal microflora. Dig Dis Sci. 1986;31(Suppl):147S-62S.PubMedCrossRefGoogle Scholar
  19. 19.
    Isolauri E, Juntunen M, Sillanaukee P, Koivula T. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics. 1991;88:90–7.PubMedGoogle Scholar
  20. 20.
    Isolauri E, Majamaa H, Arvola T, Rantala I, Virtanen E, Arvilommi H. Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology. 1993;105:1643–50.PubMedGoogle Scholar
  21. 21.
    Isolauri E, Kaila M, Mykkänen H, Ling WH, Salminen S. Oral bacteriotherapy for viral gastroenteritis. Dig Dis Sci. 1994;39:2595–600PubMedCrossRefGoogle Scholar
  22. 22.
    Kaila M, Isolauri E, Soppi E, Virtanen E, Laine S, Arvilommi H. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr Res. 1992;32:141–4PubMedGoogle Scholar
  23. 23.
    Malin M, Suomalainen H, Saxelin M, Isolauri E. Promotion of IgA immune response in patients with Crohon's disease by oral bacteriotherapy with Lactobacillus GG. Ann Nutr Metab. 1996;40:137–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365–78PubMedGoogle Scholar
  25. 25.
    Björk L, Hopman J. Significance of the indigenous antimicrobial agents of milk to the dairy industry. Bull Int Dairy Federation. 1991;246:1–19.Google Scholar
  26. 26.
    Goldman AS. The immune system of human milk: antimicrobial, antiinflammatory and immunomodulating properties. Pediatr Infect Dis J. 1993;12:664–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Mietens C, Keinhorst H. Treatment of infantile E. coli gastroenteritis with specific bovine anti-E. coli milk immunoglobulins. Eur J Pediatr. 1979;132:239–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Hilpert H, Brüssow H, Mietens C, Sidoti J, Lerner L, Werchau H. Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants. J Infect Dis. 1987;156: 158–66.PubMedGoogle Scholar
  29. 29.
    Isolauri E, Virtanen E, Jalonen T, Arvilommi H. Local immune response measured in blood lymphocytes reflects the clinical reactivity of children with cow's milk allergy. Pediatr Res. 1990;28:582–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Yocum DE, Esparza L, Dubry S, Benjamin JB, Volz R, Scuder P. Characteristics of tumor necrosis factor production in rheumatoid arthritis. Cell Immunol. 1989;122:131–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Drasar BS, Hill MJ. Bacterial glycosidases. In: Drasar BS, Hill MJ, eds. Human Intestinal Flora. London: Academic Press: 1974:54–71.Google Scholar
  32. 32.
    Peltonen R, Eerola E. Derect automatic bacterial analysis of rat stool samples: the effects of diet and medical treatment studied by computerized gas-liquid chromatography of bacterial fatty acids. Microbial Ecol Health Dis. 1992;5:93–103.Google Scholar
  33. 33.
    Braegger CP, Nicholls S, Murch SH, Stephens S, Macdonald TT. Tumor necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet. 1992;339:89–91.PubMedCrossRefGoogle Scholar
  34. 34.
    Thomas DW, Sinatra FR, Merritt RJ. Random fecal alpha-1-antitrypsin concentration in children with gastrointestinal disease. Gastroenterology. 1981;80:776–82.PubMedGoogle Scholar
  35. 35.
    Wood PHN. Nomenclature and classification of arthritis in children. In: Munthe E, ed. The Care of Rheumatic Children. Basle: EULAR Publishers; 1978:47–50.Google Scholar
  36. 36.
    Donohue DC, Deighton M, Ahokas JT, Salminen S. Toxicity of lactic acid bacteria. In: Salminen S, von Wright A, eds. Lactic Acid Bacteria. New York: Marcel Dekker Inc.; 1993:307–13.Google Scholar
  37. 37.
    Freeman HJ. Effects of differing purified cellulose, pectin, and hemi-cellulose fiber diets on fecal enzymes in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Cancer Res. 1986;46:5529–32.PubMedGoogle Scholar
  38. 38.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMedGoogle Scholar
  39. 39.
    Moss CW, Nunez-Montiel OL. Analysis of short-chain acids from bacteria by gas-liquid chromatography with a fused-silica capillary column. J Clin Microbiol. 1982;15:308–11.PubMedGoogle Scholar
  40. 40.
    Kantele A, Arvilommi H, Jokinen I. Specific immunoglobulin-secreting human blood cells after peroral vaccination against Salmonella typhi. J Infect Dis. 1986;158:1126–31.Google Scholar
  41. 41.
    Forrest BD. Identification of an intestinal immune response using peripheral blood lymphocytes. Lancet. 1988;i:81–3.CrossRefGoogle Scholar
  42. 42.
    Czerkinsky C, Svennerholm A-M, Quiding M, Jonsson R, Holmgren J. Antibody-producing cells in peripheral blood and salivary glands after cholera vaccination of humans. Infect Immun. 1991;59: 996–1001.PubMedGoogle Scholar
  43. 43.
    Kantele A. Immune response to prolonged intestinal exposure to antigen. Scand J Immunol. 1991;33:225–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Mestecky J, McGhee JR. Immunoglobulin A(IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. In: Dixon FJ, ed. Advances in Immunology. Florida: Academic Press; 1987:153–245.Google Scholar
  45. 45.
    Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S. Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci. 1992;37:121–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Elso S, Saxelin M, Salminen S. Attachment of Lactobacillus casei strain GG to human colon carcinoma cell line Caco-2: comparison with other dairy strains. Lett Appl Microbiol. 1991;13:154–6.Google Scholar
  47. 47.
    Saxelin M, Elo S, Salminen S, Vapaatalo H. Dose response colonisation of faeces after oral administration of Lactobacillus casei strain GG. Microbial Ecol Health Dis. 1991;4:209–14.CrossRefGoogle Scholar
  48. 48.
    Hill MJ, Drasar BS. The normal colonic bacterial flora. Gut. 1995;16:318–23.Google Scholar
  49. 49.
    Simon Gl, Gorbach SL. Intestinal flora in health and disease. Gastroenterology. 1984;86:174–93.PubMedGoogle Scholar
  50. 50.
    Mobley HLT, Hausinger RP. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev. 1989;53:85–108.PubMedGoogle Scholar
  51. 51.
    Malin M, Verronen P, Mykkänen H, Salminen S, Isolauri E. Increased bacterial urease activity in faeces in juvenile chronic arthritis: evidence of altered intestinal microflora? Br J Rheumatol. 1996;35:689–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Ling WH, Saxelin M, Hänninen O, Salminen S. Enzyme profile of Lactobacillus strain GG by a rapid API ZYM system: a comparison of intestinal bacterial strains. Microbial Ecol Health Dis. 1994;7:99–104.Google Scholar
  53. 53.
    Majamaa H, Miettinen A, Laine S, Isolauri E. Intestinal inflammation in children with atopic eczema: faecal eosinophil cationic protein and tumor necrosis factor-α as noninvasive indicators of food allergy. Clin Exp Allergy. 1996;26:181–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Stolle RJ, Beck LR. Prevention and treatment of rheumatoid arthritis. United States patent number 1988;4, 732, 757.Google Scholar
  55. 55.
    Ormrod DJ, Miller TE. A low molecular weight component derived from the milk of hyperimmunized cows suppresses inflammation by inhibiting neutrophil emigration. Agents. Action. 1992;37:70–9.CrossRefGoogle Scholar
  56. 56.
    McClead RE, Gregory SA. Resistance of bovine colostral anti-cholera toxin antibody to in vitro and in vivo proteolysis. Infect Immun. 1984;44:474–8.PubMedGoogle Scholar
  57. 57.
    Nomoto K, Matsuoka Y, Hayakawa K et al. Antibacterial effect of bovine milk antibody against Eschericia coli in a mouse indigenous infection model. Med Microbiol Immunol. 1992;181:87–98.PubMedCrossRefGoogle Scholar
  58. 58.
    Kobayashi T, Ohmori T, Yanai M, Kawanishi G, Yoshikai Y, Nomoto K. Protective effect of orally administering immune milk on endogenous infection in X-irradiated mice. Agric Biol Chem. 1991;55:2265–72.Google Scholar
  59. 59.
    Ishida A, Yoshikai Y, Murosaki S, Hidaka Y, Nomoto K. Administration of milk from cows immunized with intestinal bacteria protects mice from radiation-induced lethality. Biotherapy. 1992;5:215–25.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • M. Malin
    • 1
  • P. Verronen
    • 1
  • H. Korhonen
    • 2
  • E. -L. Syväoja
    • 3
  • S. Salminen
    • 4
  • H. Mykkänen
    • 5
  • H. Arvilommi
    • 6
  • E. Eerola
    • 7
  • E. Isolauri
    • 8
  1. 1.Medical School, University of Tampere and Department of PaediatricsTampere University HospitalTampereFinland
  2. 2.Food Research InstituteAgricultural Research Centre of FinlandJokioinenFinland
  3. 3.Research and Development CentreValio LTDHelsinkiFinland
  4. 4.Department of Biochemistry and Food ChemistryUniversity of TurkuTurkuFinland
  5. 5.Department of Clinical NutritionUniversity of KuopioKuopioFinland
  6. 6.Department in TurkuNational Public Health InstituteTurkuFinland
  7. 7.Department of Medical MicrobiologyUniversity of TurkuTurkuFinland
  8. 8.Department of PaediatricsUniversity of TurkuTurkuFinland

Personalised recommendations