Oleic acid-containing semisolid dosage forms exhibit in vivo anti-inflammatory effect via glucocorticoid receptor in a UVB radiation-induced skin inflammation model

  • Natháli Schopf Pegoraro
  • Camila Camponogara
  • Mailine Gehrcke
  • Laura Minussi Giuliani
  • Dariane Trivisiol da Silva
  • Luana Haselein Maurer
  • Priscilla Dias
  • Tatiana Emanuelli
  • Letícia Cruz
  • Sara Marchesan OliveiraEmail author
Original Article


The treatment of cutaneous inflammation with topical corticosteroids may cause adverse effects reinforcing the need for therapeutic alternatives to treat inflammatory skin disorders. We investigated the anti-inflammatory effect of oleic acid (OA), a fatty acid of the omega-9 (ω-9) family, and we point out it as an alternative to treat inflammatory skin disorders. OA was incorporated into Lanette®- or Pemulen® TR2-based semisolid preparations and the pH, spreadability, rheological behavior and in vivo anti-inflammatory performance in a UVB radiation-induced skin inflammation model in mice were assessed. The anti-inflammatory activity was verified after single or repeated treatment of the mouse ear following the UVB. The OA action on glucocorticoid receptors was investigated. Both semisolids presented pH values compatible with the deeper skin layers, appropriate spreadability factors, and non-Newtonian pseudoplastic rheological behavior. Pemulen® 3% OA inhibited ear edema with superior efficacy than Lanette® 3% OA and dexamethasone after a single treatment. Pemulen® 3% OA and dexamethasone also reduced inflammatory cell infiltration. After repeated treatments, all formulations decreased the ear edema at 24 h, 48 h and 72 h after UVB. OA in semisolids, especially Pemulen® TR2-based ones, presented suitable characteristics for cutaneous administration and its anti-inflammatory activity seems to occur via glucocorticoid receptors. OA was also capable to reduce croton oil-induced skin inflammation. Besides, the ex vivo skin permeation study indicated that OA reaches the receptor medium, which correlates with a systemic absorption in vivo. The natural compound OA could represent a promising alternative to those available to treat inflammatory skin disorders.

Graphic abstract


Omega-9 fatty acid Skin inflammation Sunburn Croton oil Skin permeation Mifepristone 



Analysis of variance


Bovine serum albumin




Maximal effect


Maximum inhibition

Lanette® 0.3% OA

Lanette®-based semisolid containing 0.3% oleic acid

Lanette® 1% OA

Lanette®-based semisolid containing 1% oleic acid

Lanette® 3% OA

Lanette®-based semisolid containing 3% oleic acid


Oleic acid

Pemulen® 0.3% OA

Pemulen® TR2-based semisolid containing 0.3% oleic acid

Pemulen® 1% OA

Pemulen® TR2-based semisolid containing 1% oleic acid

Pemulen® 3% OA

Pemulen® TR2-based semisolid containing 3% oleic acid


Standard deviation


Sodium dodecyl sulfate


Standard error of the mean




Ultraviolet radiation type A


Ultraviolet radiation type B


Ultraviolet radiation type C


Ultraviolet radiation



NSP thanks Frigorífico Avisui for porcine skin donation.


This study was supported by the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul-FAPERGS and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq [Grant #16/2551-0000281-9]; and by FAPERGS [Grant #17/2551-0001082-5] (Brazil); and by the CNPq [process #406098/2018-2]; and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES/PROEX [#23038.005848/2018-31 and 23038.004173/2019-93; Grant: 0493/019]. SMO is recipient of fellowship from CNPq [process #307220/2017-6) and NSP and CC are recipient of fellowship from CAPES/PROEX [process #88882.182128/2018-01; process #88882.182152/2018-01]. We thank CNPq and CAPES for their fellowship support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ali SM, Yosipovitch G (2013) Skin pH: from basic science to basic skin care. Acta Derm Venereol 93:261–267PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aulton ME (2005) Delineamento de formas farmacêuticas, 2nd edn. Porto Alegre, ArtmedGoogle Scholar
  3. Bald T, Landsberg J, Jansen P et al (2016) Phorbol ester-induced neutrophilic inflammatory responses selectively promote metastatic spread of melanoma in a TLR4-dependent manner. Oncoimmunology 5(2):1–10CrossRefGoogle Scholar
  4. Barnes L, Kaya G, Rollason V (2015) Topical corticosteroid-induced skin atrophy: a comprehensive review. Drug Saf 38(5):493–509PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bhoir SS, Vishwapathi V, Singh KK (2019) Antipsoriatic potential of Annona squamosa seed oil: an in vitro and in vivo evaluation. Phytomedicine 54:265–277PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  7. Borghetti GS, Knorst MT (2006) Desenvolvimento e avaliação da estabilidade física de loções O/A contendo filtros solares. Rev Bras Cienc Farm 42:531–537CrossRefGoogle Scholar
  8. Brum TF, Camponogara C, da Silva JR et al (2016) Ethnopharmacological study and topical anti-inflammatory activity of crude extract from Poikilacanthus glandulosus (Nees) Ariza leaves. J Ethnopharmacol 193:60–67PubMedCrossRefPubMedCentralGoogle Scholar
  9. Camponogara C, Silva CR, Brusco I et al (2019a) Nasturtium officinale R. Br. effectively reduces the skin inflammation induced by croton oil via glucocorticoid receptor-dependent and NF-ĸB pathways without causing toxicological effects in mice. J Ethnopharmacol 229:190–204PubMedCrossRefPubMedCentralGoogle Scholar
  10. Camponogara C, Casoti R, Brusco I et al (2019b) Tabernaemontana catharinensis leaves exhibit topical anti-inflammatory activity without causing toxicity. J Ethnopharmacol 231:205–216PubMedCrossRefPubMedCentralGoogle Scholar
  11. Camponogara C, Casoti R, Brusco I et al (2019c) Tabernaemontana catharinensis leaves effectively reduce the irritant contact dermatitis by glucocorticoid receptor-dependent pathway in mice. Biomed Pharmacother 109:646–657PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cardoso CR, Favoreto S Jr, Oliveira LL et al (2011) Oleic acid modulation of the immune response in wound healing: a new approach for skin repair. Immunobiology 216:409–415PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chang RK, Raw A, Lionberger R et al (2013) Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J 15(1):41–52PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chiu IM, von Hehn CA, Woolf CJ (2012) Neurogenic inflammation—the peripheral nervous system's role in host defense and immunopathology. Nat Neurosci 15(8):1063–1067PubMedPubMedCentralCrossRefGoogle Scholar
  15. Coondoo A, Phiske M, Verma S, Lahiri K (2014) Side-effects of topical steroids: a long overdue revisit. Indian Dermatol Online J 5(4):416–425PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cosmetic Ingredient Review (1987) Final report on the safety assessment of oleic acid, lauric acid, palmitic acid, myristic acid, and stearic acid. J Am Coll Toxicol 6(3):321–401CrossRefGoogle Scholar
  17. Cosmetic Ingredient Review (2019) Safety assessment of fatty acids and fatty acids salts as used in cosmeticsGoogle Scholar
  18. De Caterina R, Cybulsky MI, Clinton SK et al (1994) The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells. Arterioscler Thromb 14:1829–1836PubMedCrossRefPubMedCentralGoogle Scholar
  19. D'Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14(6):12222–12248PubMedPubMedCentralCrossRefGoogle Scholar
  20. Favacho HAS, Oliveira BR, Santos KC et al (2010) Anti-inflammatory and antinociceptive activities of Euterpe oleracea Mart., Arecaceae, oil. Rev Bras Farmacogn 21:105–114CrossRefGoogle Scholar
  21. Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15:551–567PubMedCrossRefPubMedCentralGoogle Scholar
  22. Garg A, Aggarwal D, Garg S, Singla AK (2002) Spreading of semisolid formulations: an update. Pharm Technol 26:84–105Google Scholar
  23. Hartman L, Lago BC (1973) Rapid preparation of fatty methyl esters from lipids. Lab Pract 22:475–477PubMedPubMedCentralGoogle Scholar
  24. Hengge UR, Ruzicka T, Schwartz RA, Cork MJ (2006) Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol 54(1):1–15PubMedCrossRefPubMedCentralGoogle Scholar
  25. Jankowski A, Dyja R, Sarecka-Ujar B (2017) Dermal and transdermal delivery of active substances from semisolid bases. Indian J Pharm Sci 79(4):488–500CrossRefGoogle Scholar
  26. Kim JY, Song JY, Lee EJ, Park SK (2003) Rheological properties and microstructures of Carbopol gel network system. Colloid Polym Sci 281:614–623CrossRefGoogle Scholar
  27. Kripke ML (1994) Ultraviolet radiation and immunology: something new under the sun-presidential address. Cancer Res 54:6102–6105PubMedPubMedCentralGoogle Scholar
  28. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71(6):525–616CrossRefGoogle Scholar
  29. Lima-Salgado TM, Alba-Loureiro TC, do Nascimento CS et al (2011) Molecular mechanisms by which saturated fatty acids modulate TNF-α expression in mouse macrophage lineage. Cell Biochem Biophys 59:89–97PubMedCrossRefPubMedCentralGoogle Scholar
  30. Lordani TVA, de Lara CE, Ferreira FBP et al (2018) Therapeutic effects of medicinal plants on cutaneous wound healing in humans: a systematic review. Mediators Inflamm 2018:1–12CrossRefGoogle Scholar
  31. Marchiori MCL, Rigon C, Camponogara C et al (2017) Hydrogel containing silibinin-loaded pomegranate oil based nanocapsules exhibits anti-inflammatory effects on skin damage UVB radiation-induced in mice. J Photochem Photobiol B 170:25–32PubMedCrossRefPubMedCentralGoogle Scholar
  32. Mazzarino L, Knorst MT (2007) Desenvolvimento e caracterização farmacotécnica de formas farmacêuticas semi-sólidas contendo nimesulida. Lat Am J Pharm 26(3):415–419Google Scholar
  33. McGrath JC, Lilley E (2015) Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172(13):3189–3193PubMedPubMedCentralCrossRefGoogle Scholar
  34. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435PubMedCrossRefPubMedCentralGoogle Scholar
  35. Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140(6):771–776PubMedCrossRefGoogle Scholar
  36. Mendes DAGB (2016) Hydroalcoholic extract of Sapium glandulatum (Vell.) Pax displays potent anti-inflammatory activities through a glucocorticoid receptor-dependent pathway. Phytomedicine 23:1610–1620PubMedCrossRefGoogle Scholar
  37. Mittal M, Siddiqui MR, Tran K et al (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167PubMedPubMedCentralCrossRefGoogle Scholar
  38. Morais SM, do Nascimento JET, Silva AAS et al (2017) Fatty acid profile and anti-inflammatory activity of fixed plant oils. Acta Sci Vet 45(1437):1–8Google Scholar
  39. Nabi SAA, Sheraz MA, Ahmed S et al (2016) Pharmaceutical gels: a review. RADS J Pharm Pharm Sci 4(1):40–48Google Scholar
  40. Nan W, Ding L, Chen H et al (2018) Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation. Front Pharmacol 9:1–11CrossRefGoogle Scholar
  41. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9(10):679–691PubMedPubMedCentralCrossRefGoogle Scholar
  42. Nourshargh S, Alon R (2014) Leukocyte migration into inflammed tissues. Immunity 41(5):694–707PubMedCrossRefPubMedCentralGoogle Scholar
  43. Nwoko VE (2014) Semi solid dosage forms manufacturing: tools, critical process parameters, strategies, optimization and validation. Sch Acad J Pharm 3(2):153–161Google Scholar
  44. Oh YT, Lee JY, Lee J et al (2009) Oleic acid reduces lipopolysaccharide-induced expression of iNOS and COX-2 in BV2 murine microglial cells: possible involvement of reactive oxygen species, p38 MAPK, and Ikk/NF-kappaB signaling pathways. Neurosci Lett 464:93–97PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ortega-Gómez A, Perretti M, Soehnlein O (2013) Resolution of inflammation: an integrated view. EMBO Mol Med 5(5):661–674PubMedPubMedCentralCrossRefGoogle Scholar
  46. Otto A, du Plessis J, Wiechers JW (2009) Formulation effects of topical emulsions on transdermal and dermal delivery. Int J Cosmet Sci 31:1–19PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ourique AF, Melero A, de Bona da Silva C et al (2011) Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur J Pharm Biopharm 79(1):95–101PubMedCrossRefPubMedCentralGoogle Scholar
  48. Pasparakis M, Haase I, Nestle FO (2014) Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14(5):289–301PubMedCrossRefPubMedCentralGoogle Scholar
  49. Pegoraro NS, Barbieri AV, Camponogara C et al (2017) Nanoencapsulation of coenzyme Q10 and vitamin E acetate protects against UVB radiation-induced skin injury in mice. Colloids Surf B Biointerfaces 150:32–40PubMedCrossRefPubMedCentralGoogle Scholar
  50. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46PubMedCrossRefPubMedCentralGoogle Scholar
  51. Piana M, Camponogara C, Boligon AA et al (2016) Topical anti-inflammatory activity of Solanum corymbiflorum leaves. J Ethnopharmacol 179:16–21PubMedCrossRefPubMedCentralGoogle Scholar
  52. Rathod HJ, Mehta DP (2015) A review on pharmaceutical gel. Int J Pharm Sci 1:33–47Google Scholar
  53. Ravenel N (2010) Pemulen® TR-2: an emulsifying agent with promise. WAAC Newsl 32:3Google Scholar
  54. Reuter J, Huyke C, Scheuvens H et al (2008) Skin tolerance of a new bath oil containing St. John's Wort extract. Skin Pharmacol Physiol 21:306–311PubMedCrossRefPubMedCentralGoogle Scholar
  55. Rigo LA, Weber J, de Bona da Silva C, Beck RCR, (2012) Evaluation of the spreadability of pharmaceutical or cosmetic semisolid formulations using scanned images. Lat Am J Pharm 31:1387–1391Google Scholar
  56. Rigo LA, da Silva CR, de Oliveira SM et al (2015) Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice. Eur J Pharm Biopharm 93:11–17PubMedCrossRefPubMedCentralGoogle Scholar
  57. Rigon C, Marchiori MCL, Jardim FS et al (2019) Hydrogel containing silibinin nanocapsules presents effective anti-inflammatory action in a model of irritant contact dermatitis in mice. Eur J Pharm Sci 137:104969PubMedCrossRefPubMedCentralGoogle Scholar
  58. Rodrigues HG, Vinolo MA, Magdalon J et al (2012) Oral administration of oleic or linoleic acid accelerates the inflammatory phase of wound healing. J Invest Dermatol 132:208–215PubMedCrossRefPubMedCentralGoogle Scholar
  59. Roncero JM, Álvarez-Ortí M, Pardo-Giménez A et al (2016) Virgin almond oil: extraction methods and composition. Grasas Aceites 67(3):1–9Google Scholar
  60. Roth SH (2012) Coming to terms with nonsteroidal anti-inflammatory drug gastropathy. Drugs 72:873–879PubMedCrossRefPubMedCentralGoogle Scholar
  61. Rowan MP, Cancio LC, Elster EA et al (2015) Burn wound healing and treatment: review and advancements. Crit Care 19:1–12CrossRefGoogle Scholar
  62. Sadik CD, Kim ND, Luster AD (2011) Neutrophils cascading their way to inflammation. Trends Immunol 32:452–460PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sales-Campos H, Souza PR, Peghini BC et al (2013) An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem 13:201–210PubMedPubMedCentralGoogle Scholar
  64. Santos FK, Oyafuso MH, Kiill CP et al (2013) Nanotechnology-based drug delivery systems for treatment of hyperproliferative skin diseases—a review. Curr Nanosci 9:159–167Google Scholar
  65. Schuch AP, Garcia CC, Makita K, Menck CF (2013) DNA damage as a biological sensor for environmental sunlight. Photochem Photobiol Sci 12:1259–1272PubMedCrossRefPubMedCentralGoogle Scholar
  66. Schuch AP, Moreno NC, Schuch NJ et al (2017) Sunlight damage to cellular DNA: focus on oxidatively generated lesions. Free Radic Biol Med 107:110–124PubMedCrossRefPubMedCentralGoogle Scholar
  67. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361PubMedPubMedCentralCrossRefGoogle Scholar
  68. Shahin M, Hady SA, Hammad M, Mortada N (2011) Optimized formulation for topical administration of clotrimazole using Pemulen polymeric emulsifier. Drug Dev Ind Pharm 37(5):559–568PubMedCrossRefPubMedCentralGoogle Scholar
  69. Silva CR, Oliveira SM, Rossato MF et al (2011) The involvement of TRPA1 channel activation in the inflammatory response evoked by topical application of cinnamaldehyde to mice. Life Sci 88:1077–1087PubMedCrossRefPubMedCentralGoogle Scholar
  70. Silva MA, Trevisan G, Klafke JZ et al (2013) Antinociceptive and anti-inflammatory effects of Aloe saponaria Haw on thermal injury in rats. J Ethnopharmacol 146:393–401PubMedCrossRefPubMedCentralGoogle Scholar
  71. Stanley PL, Steiner S, Havens M et al (1991) Mouse skin inflammation induced by multiple topical applications of 12-O-tetradecanoylphorbol-13-acetate. Skin Pharmacol 4:262–271PubMedCrossRefPubMedCentralGoogle Scholar
  72. Szucks M, Sandri G, Bonferoni MC et al (2008) Muchoadhesive behavior of emulsions containing polymeric emulsifier. Eur J Pharm Sci 34:226–235CrossRefGoogle Scholar
  73. Tvrzicka E, Kremmyda LS, Stankova B, Zak A (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palachy Olomouc Czech Repub 155:117–130CrossRefGoogle Scholar
  74. Veiga-Júnior VF, Pinto AC (2002) O gênero Copaifera L. Quím Nova 25:273–286CrossRefGoogle Scholar
  75. Viola P, Viola M (2009) Virgin olive oil as a fundamental nutritional component and skin protector. Clin Dermatol 27:159–165PubMedCrossRefPubMedCentralGoogle Scholar
  76. Watson M, Holman DM, Maguire-Eisen M (2016) Ultraviolet radiation exposure and its impact on skin cancer risk. Semin Oncol Nurs 32(3):241–254PubMedPubMedCentralCrossRefGoogle Scholar
  77. Xiao X, Xie H, Jian D et al (2015) Rebounding triad (severe itching, dryness and burning) after facial corticosteroid discontinuation defines a specific class of corticosteroid-dependent dermatitis. J Dermatol 42:697–702PubMedCrossRefPubMedCentralGoogle Scholar
  78. Yu X, Niu Y, Zheng J et al (2015) Radix Saposhnikovia extract suppresses mouse allergic contact dermatitis by regulating dendritic-cell-activated Th1 cells. Phytomedicine 22(13):1150–1158PubMedCrossRefPubMedCentralGoogle Scholar
  79. Zhu H, Jung EC, Hui X, Maibach H (2016) Proposed human stratum corneum water domain in chemical absorption. J Appl Toxicol 36:991–996PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natháli Schopf Pegoraro
    • 1
  • Camila Camponogara
    • 1
  • Mailine Gehrcke
    • 2
  • Laura Minussi Giuliani
    • 2
  • Dariane Trivisiol da Silva
    • 3
  • Luana Haselein Maurer
    • 3
  • Priscilla Dias
    • 4
  • Tatiana Emanuelli
    • 3
  • Letícia Cruz
    • 2
  • Sara Marchesan Oliveira
    • 1
    Email author
  1. 1.Graduate Program in Biological Sciences: Biochemistry Toxicology, Center of Natural and Exact Sciences, Department of Biochemistry and Molecular BiologyFederal University of Santa MariaSanta MariaBrazil
  2. 2.Graduate Program in Pharmaceutical Sciences, Center of Health SciencesFederal University of Santa MariaSanta MariaBrazil
  3. 3.Graduate Program in Food Science and Technology, Center of Rural SciencesFederal University of Santa MariaSanta MariaBrazil
  4. 4.Graduate Program in Genetics and Biochemistry, Biotechnology InstituteFederal University of UberlândiaUberlândiaBrazil

Personalised recommendations