Central nervous system evaluation of an ethanol extract of Bidens odorata Cav (Asteraceae) leaves, and its antinociceptive interaction with paracetamol and naproxen

  • Angel Josabad Alonso-CastroEmail author
  • Juan Ramón Zapata-MoralesEmail author
  • Cesar Solorio-Alvarado
  • Andrea Hernández-Santiago
  • Luis Antonio Espinoza-Ramírez
  • Candy Carranza-Álvarez
  • Velayudham Ramadoss
Original Article



Bidens odorata Cav (Asteraceae) is a medicinal plant employed for the treatment of pain, anxiety, and depression. This study aimed to evaluate some neuropharmacological effects of an ethanol extract of B. odorata (BOE) and assess its antinociceptive interaction with naproxen and paracetamol.

Materials and methods

The following neuropharmacological effects were evaluated with the ethanolic extract of B. odorata leaves (BOE) (10–200 mg/kg p.o.): the strychnine-induced-convulsion assay (anticonvulsant effect), rotarod test (locomotor activity), tail suspension test (anti-depressant-like activity), cylinder exploratory test (anxiolytic-like actions), and pentobarbital-induced sleep test (sedative effect). The interaction of the BOE-paracetamol and BOE-naproxen combinations were evaluated with the acetic acid-induced writhing test. The ED50 value of each drug was estimated and the combinations of paracetamol and naproxen with BOE were calculated.


BOE (100–200 mg/kg) showed anti-convulsant activity by increasing the latency to occurrence of strychnine-induced convulsions, antidepressant-like effects by 28% and 33%, respectively, exerted anxiolytic actions (ED50 = 125 mg/kg), but did not affect motor locomotion. The pre-treatment with 2 mg/kg flumazenil or 20 mg/kg pentylenetetrazol partially reverted the anxiolytic activity shown by BOE alone. BOE (200 mg/kg) prolonged the duration of sleep with similar effect in comparison to clonazepam (1.5 mg/kg). The combinations of BOE-paracetamol (1:1) and BOE-naproxen (1:1) showed antinociceptive synergism.


BOE induces sedative and anticonvulsant effects. The anxiolytic actions shown by BOE are probably induced by the participation of the GABAergic system. BOE exerts antinociceptive synergistic interaction with paracetamol and naproxen probably by the participation of nitric oxide and ATP-sensitive K+ channels, respectively.


Bidens odorata Synergistic Antinociceptive Anticonvulsant Anxiolytic 



This work was supported by the Consejo Nacional de Ciencia y Tecnologia (CONACyT; Ciencia Basica-CB-2015-01-257872; provided to JRZM). Special thanks to Jessica Mora (Universidad de Guanajuato) for her technical assistance.

Authors contribution

All authors carried out chemical and pharmacological experiments. JRZM and AJAC supervised laboratory work, conceived the study, and wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Acosta-Madrid II, Castañeda-Hernández G, Cilia-López VG, Cariño-Cortés R, Pérez-Hernández N, Fernández-Martínez E, Ortiz MI (2009) Interaction between Heliopsis longipes extract and diclofenac on the thermal hyperalgesia test. Phytomedicine 16(4):336–341CrossRefGoogle Scholar
  2. Alonso-Castro AJ, Zapata-Morales JR, González-Chávez MM, Carranza-Álvarez C, Hernández-Benavides DM, Hernández-Morales A (2016) Pharmacological effects and toxicity of Costus pulverulentus C. Presl (Costaceae). J Ethnopharmacol 180:124–130CrossRefGoogle Scholar
  3. Alonso-Castro AJ, Domínguez F, Ruiz-Padilla AJ, Campos-Xolalpa N, Zapata-Morales JR, Carranza-Alvarez C, Maldonado-Miranda JJ (2017) Medicinal plants from North and Central America and the Caribbean considered toxic for humans: the other side of the coin. Evid Based Complement Altern Med. Article ID: 9439868Google Scholar
  4. Bello-González MA, Hernández-Muñoz S, Lara-Chávez MBN, Salgado-Garciglia R (2015) Plantas utiles de la comunidad indígena Nuevo San Juan Parangaritcutiro, Michoacan, Mexico. Polibotanica 39:175–215Google Scholar
  5. Beltrán-Villalobos KL, Déciga-Campos M, Aguilar-Mariscal H, González-Trujano ME, Martínez-Salazar MF, Ramírez-Cisneros MLÁ, Rios MY, López-Muñoz FJ (2017) Synergistic antinociceptive interaction of Syzygium aromaticum or Rosmarinus officinalis coadministered with ketorolac in rats. Biomed Pharmacother 94:858–864CrossRefGoogle Scholar
  6. Bernal-Morales B, Cueto-Escobedo J, Guillén-Ruiz G, Rodríguez-Landa JF, Contreras CM (2017) A fatty acids mixture reduces anxiety-like behaviors in infant rats mediated by GABAA receptors. Biomed Res Int Article ID: 8798546Google Scholar
  7. Brooks SP, Trueman RC, Dunnett SB (2012) Assessment of motor coordination and balance in mice using the rotarod, elevated Bridge, and footprint Tests. Curr Protoc Mouse Biol 2(1):37–53PubMedGoogle Scholar
  8. de Carvalho RS, Duarte FS, de Lima TC (2011) Involvement of GABAergic non-benzodiazepine sites in the anxiolytic-like and sedative effects of the flavonoid baicalein in mice. Behav Brain Res 221(1):75–82CrossRefGoogle Scholar
  9. Findlay GS, Wick MJ, Mascia MP, Wallace D, Miller GW, Harris RA, Blednov YA (2002) Transgenic expression of a mutant glycine receptor decreases alcohol sensitivity of mice. J Pharmacol Exp Ther 300(2):526–534CrossRefGoogle Scholar
  10. Harirforoosh S, Asghar W, Jamali F (2013) Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci 16(5):821–847CrossRefGoogle Scholar
  11. Hiller K, Zetler G (1996) Neuropharmacological studies on ethanol extracts of Valeriana officinalis: behavioral and anticonvulsant properties. Phytother Res 10(2):145–151CrossRefGoogle Scholar
  12. Jain NK, Kulkarni SK, Singh A (2001) Differential antinociceptive effect of cyclooxygenase inhibitors in acetic acid-induced chemonociception in mice. Analgesia 5(3–4):211–216Google Scholar
  13. Josabad Alonso-Castro A, Maldonado-Miranda JJ, Zarate-Martínez A, Jacobo-Salcedo MdR, Fernandez-Galicia C, Figueroa-Zuñiga LA, Rios-Reyes NA, de León-Rubio MA, Medellín-Castillo NA, Reyes-Munguia A, Mendez-Martinez R, Carranza-Álvarez C (2012) Medicinal plants used in the Huasteca Potosina, México. J Ethnopharmacol 143(1):292–298CrossRefGoogle Scholar
  14. Lee JJ, Kong M, Ayers GD, Lotan R (2007) Interaction index and different methods for determining drug interaction in combination therapy. J Biopharm Stat 17(3):461–480CrossRefGoogle Scholar
  15. Lehmann J, Hutchison A, McPherson SE, Mondadori C, Schmutz M, Sinton CM, Tsai C, Murphy DE, Steel DJ, Williams M, Cheney DL, Wood PL (1988) CGS 19755. A selective and competitive N-methyl-d-aspartate-type excitatory amino acid receptor antagonist. J Pharmacol Exp Ther 246(1):65–75PubMedGoogle Scholar
  16. Ma Y, Ma H, Hong JT, Kim YB, Nam SY, Oh KW (2008) Cocaine withdrawal enhances pentobarbital-induced sleep in rats: evidence of GABAergic modulation. Behav Brain Res 194(1):114–117CrossRefGoogle Scholar
  17. NOM 062-ZOO-1999 Technical specifications for the production, care, and use of laboratory animalsGoogle Scholar
  18. Ortiz MI, Torres-López JE, Castañeda-Hernández G, Rosas R, Vidal-Cantú GC, Granados-Soto V (2002) Pharmacological evidence for the activation of K(+) channels by diclofenac. Eur J Pharmacol 438(1–2):85–91CrossRefGoogle Scholar
  19. Van Norman GA (2015) A matter of mice and men: ethical issues in animal experimentation. Int Anesthesiol Clin 53(3):63–78CrossRefGoogle Scholar
  20. Wesołowska A, Nikiforuk A, Stachowicz K, Tatarczyńska E (2006) Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacol 51(3):578–586CrossRefGoogle Scholar
  21. Winkelman M (1986) Frequently used medicinal plants in Baja California Norte. J Ethnopharmacol 18(2):109–131CrossRefGoogle Scholar
  22. Zakaria ZA, Mat-Jais AM, Goh YM, Sulaiman MR, Somchit MN (2007) Amino acid and fatty acid composition of an aqueous extract of Channa striatus (Haruan) that exhibits antinociceptive activity. Clin Exp Pharmacol Physiol 34(3):198–204CrossRefGoogle Scholar
  23. Zapata-Morales JR, Alonso-Castro AJ, Domínguez F, Carranza-Álvarez C, Isiordia-Espinoza M, Hernández-Morales A, Solorio-Alvarado C (2017) The antinociceptive effects of a standardized ethanol extract of the Bidens odorata Cav (Asteraceae) leaves are mediated by ATP-sensitive K + channels. J Ethnopharmacol 207:30–33CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Farmacia, División de Ciencias Naturales y ExactasUniversidad de GuanajuatoGuanajuatoMexico
  2. 2.Departamento de Química, División de Ciencias Naturales y ExactasUniversidad de GuanajuatoGuanajuatoMexico
  3. 3.Unidad Académica Multidisciplinaria de la Zona HuastecaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations