Advertisement

Anti-inflammatory and antinociceptive effects of an ethanol extract from Senna septemtrionalis

  • Víctor Ermilo Arana-Argáez
  • Fabiola Domínguez
  • Diego A. Moreno
  • Mario Alberto Isiordia-Espinoza
  • Julio Cesar Lara-Riegos
  • Emanuel Ceballos-Góngora
  • Juan Ramón Zapata-Morales
  • Lorenzo Franco-de la Torre
  • Sergio Sánchez-Enríquez
  • Angel Josabad Alonso-CastroEmail author
Original Article
  • 45 Downloads

Abstract

Senna septemtrionalis (Viv.) H.S. Irwin & Barneby (Fabaceae) is a medicinal plant used as a folk remedy for inflammation and pain. The objective of this study was to evaluate the anti-inflammatory and antinociceptive actions of an ethanol extract of Senna septemtrionalis aerial parts (SSE). The in vitro anti-inflammatory effects of SSE were assessed using LPS-stimulated macrophages and the subsequent quantification of the levels of cytokines (IL-6, IL-1β, and TNF-α) with ELISA kits, nitric oxide (NO), and hydrogen peroxide (H2O2). The in vivo anti-inflammatory actions of SSE were evaluated with the TPA-induced ear oedema test and the carrageenan-induced paw oedema test. The antinociceptive actions of SSE (10–200 mg/kg p.o.) were assessed using three models: two chemical assays (formalin-induced orofacial pain and acetic acid-induced visceral pain) and one thermal assay (hot plate). SSE showed in vitro anti-inflammatory actions with IC50 values calculated as follows: 163.3 µg/ml (IL-6), 154.7 µg/ml (H2O2) and > 200 µg/ml (IL-1β, TNF-α, and NO). SSE showed also in vivo anti-inflammatory actions in the TPA test (40% of inhibition of ear oedema) and the carrageenan test (ED50 = 137.8 mg/kg p.o.). SSE induced antinociceptive activity in the formalin orofacial pain test (ED50 = 80.1 mg/kg) and the acetic acid-induced writhing test (ED50 = 110 mg/kg). SSE showed no antinociceptive actions in the hot plate assay. The pre-treatment with glibenclamide abolished the antinociceptive action shown by SSE alone. Overall, SSE exerted in vitro and in vivo anti-inflammatory actions, and in vivo antinociceptive effects by the possible involvement of ATP-sensitive K + channels.

Keywords

Senna septemtrionalis Antinociceptive Anti-inflammatory Medicinal plant 

Notes

Acknowledgements

This work was partially supported by the Directorate for Research Support and Postgraduate Programs (DAIP) at University of Guanajuato (DAIP, CIIC 67/2019, provided to AJAC). An experimental section of this work was supported by the program SEP-PRODEP (Apoyo a la Incorporación de Nuevos PTC, Grant Number: UDG-PTC-1438 Number 511-6/18/9169, provided to MAIE).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

References

  1. Aguilar A, Argueta A, Cano L (1994) Flora medicinal indígena de México. Instituto Nacional Indigenista México City, MexicoGoogle Scholar
  2. Alemayehu G, Adane L, Abegaz BM (2010) A new bianthracene C-arabinopyranoside from Senna septemtrionalis. Nat Prod Commun 5(5):747–750PubMedGoogle Scholar
  3. Allkin B (2017) Useful plants—medicines: at least 28,187 plant species are currently recorded as being of medicinal use. In: Willis KJ (ed) State of the world’s plants 2017. Royal Botanic Gardens, Kew, London (UK)Google Scholar
  4. Alonso-Castro AJ, Rangel-Velázquez JE, Isiordia-Espinoza MA, Villanueva-Solís LE, Aragon-Martinez OH, Zapata-Morales JR (2017) Synergism between naproxen and rutin in a mouse model of visceral pain. Drug Dev Res 78(5):184–188CrossRefGoogle Scholar
  5. Alonso-Castro AJ, Alba-Betancourt C, Yáñez-Barrientos E, Luna-Rocha C, Páramo-Castillo AS, Aragón-Martínez OH, Zapata-Morales JR, Cruz-Jiménez G, Gasca-Martínez D, González-Ibarra AA, Álvarez-Camacho DA, Devezé-Álvarez MA (2019) Diuretic activity and neuropharmacological effects of an ethanol extract from Senna septemtrionalis (Viv.) H.S. Irwin & Barneby (Fabaceae). J Ethnopharmacol 239:111923CrossRefGoogle Scholar
  6. Ankier SI (1974) New hot plate tests to quantify antinociceptive and narcotic antagonist activities. Eur J Pharmacol 27(1):1–4CrossRefGoogle Scholar
  7. Barreras-Espinoza I, Soto-Zambrano JA, Serafín-Higuera N, Zapata-Morales R, Alonso-Castro Á, Bologna-Molina R, Granados-Soto V, Isiordia-Espinoza MA (2017) The antinociceptive effect of a tapentadol-ketorolac combination in a mouse model of trigeminal pain is mediated by opioid receptors and ATP-sensitive K + channels. Drug Dev Res 78(1):63–70CrossRefGoogle Scholar
  8. Calhoun W, Chang J, Carlson RP (1987) Effect of selected antiinflammatory agents and other drugs on zymosan, arachidonic acid, PAF and carrageenan induced paw edema in the mouse. Agents Actions 21(3–4):306–309CrossRefGoogle Scholar
  9. Dinarello CA (1999) Cytokines as endogenous pyrogens. J Infect Dis 179:294–304CrossRefGoogle Scholar
  10. do Nascimento JET, de Morais SM, de Lisboa DS, de Oliveira Sousa M, Santos SAAR, Magalhães FEA, Campos AR (2018) The orofacial antinociceptive effect of Kaempferol-3-O-rutinoside, isolated from the plant Ouratea fieldingiana, on adult zebrafish (Danio rerio). Biomed Pharmacother 107:1030–1036CrossRefGoogle Scholar
  11. Flores-Ocelotl MR, Rosas-Murrieta NH, Moreno DA, Vallejo-Ruiz V, Reyes-Leyva J, Domínguez F, Santos-López G (2018) Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro. BMC Complement Altern Med 18(1):95CrossRefGoogle Scholar
  12. Guardia T, Rotelli AE, Juarez AO, Pelzer LE (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 56(9):683–687CrossRefGoogle Scholar
  13. Hernandez-Leon A, Fernández-Guasti A, González-Trujano ME (2016) Rutin antinociception involves opioidergic mechanism and descending modulation of ventrolateral periaqueductal grey matter in rats. Eur J Pain 20(2):274–283CrossRefGoogle Scholar
  14. Inoue H, Mori T, Shibata S, Koshihara Y (1989) Modulation by glycyrrhetinic acid derivatives of TPA-induced mouse ear oedema. Br J Pharmacol 96(1):204–210CrossRefGoogle Scholar
  15. Jones L, Bartholomew B, Latif Z, Sarker SD, Nash RJ (2000) Constituents of Cassia laevigata. Fitoterapia 71(5):580–583CrossRefGoogle Scholar
  16. la Torre Fabiola VD, Ralf K, Gabriel B, Victor Ermilo AA, Martha MG, Mirbella CF, Rocio BA (2016) Anti-inflammatory and immunomodulatory effects of Critonia aromatisans leaves: downregulation of pro-inflammatory cytokines. J Ethnopharmacol 190:174–182CrossRefGoogle Scholar
  17. Nathan CF, Root RK (1977) Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med 146(6):1648–1662CrossRefGoogle Scholar
  18. Qiu X, Zhang J, Huang Z, Zhu D, Xu W (2013) Profiling of phenolic constituents in Polygonum multiflorum Thunb. by combination of ultra-high-pressure liquid chromatography with linear ion trap-Orbitrap mass spectrometry. J Chromatogr A 1292:121–131CrossRefGoogle Scholar
  19. Reichert JA, Daughters RS, Rivard R, Simone DA (2001) Peripheral and preemptive opioid antinociception in a mouse visceral pain model. Pain 89(2–3):221–227CrossRefGoogle Scholar
  20. Selloum L, Bouriche H, Tigrine C, Boudoukha C (2003) Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemotaxis and degranulation. Exp Toxicol Pathol 54(4):313–318CrossRefGoogle Scholar
  21. Singh J (1982) Two rhamnetin digalactosides and an oleanolic acid digalactoside from the flowers of Cassia laevigata. Phytochem 21(7):1832–1833CrossRefGoogle Scholar
  22. Singh J, Tiwari AR, Tiwari RD (1980) Anthraquinones and flavonoids of Cassia laevigata roots. Phytochem 19(6):1253–1254CrossRefGoogle Scholar
  23. Siqueira-Lima PS, Araújo AA, Lucchese AM, Quintans JS, Menezes PP, Alves PB, de Lucca Júnior W, Santos MR, Bonjardim LR, Quintans-Júnior LJ (2014) β-cyclodextrin complex containing Lippia grata leaf essential oil reduces orofacial nociception in mice—evidence of possible involvement of descending inhibitory pain modulation pathway. Basic Clin Pharmacol Toxicol 114(2):188–196CrossRefGoogle Scholar
  24. Wang Y, Chen P, Tang C, Wang Y, Li Y, Zhang H (2014) Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L. J Ethnopharmacol 151(2):944–950CrossRefGoogle Scholar
  25. Yoo H, Ku SK, Baek YD, Bae JS (2014) Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm Res 63(3):197–206CrossRefGoogle Scholar
  26. Zamani Taghizadeh Rabe S, Mahmoudi M, Ahmadsimab H, Zamani Taghizadeh Rabe SS, Emami A (2014) Investigation of the biological activity of methanol extract from Eremostachys labiosa Bunge. Food Agric Immunol 25(4):578–585CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Víctor Ermilo Arana-Argáez
    • 1
  • Fabiola Domínguez
    • 2
  • Diego A. Moreno
    • 3
  • Mario Alberto Isiordia-Espinoza
    • 4
  • Julio Cesar Lara-Riegos
    • 1
  • Emanuel Ceballos-Góngora
    • 1
  • Juan Ramón Zapata-Morales
    • 5
  • Lorenzo Franco-de la Torre
    • 4
  • Sergio Sánchez-Enríquez
    • 4
  • Angel Josabad Alonso-Castro
    • 5
    Email author
  1. 1.Facultad de QuímicaUniversidad Autónoma de YucatánMéridaMexico
  2. 2.Laboratorio de Biotecnología de Productos Naturales, Centro de Investigación Biomédica de OrienteInstituto Mexicano del Seguro SocialMetepecMexico
  3. 3.Phytochemistry and Healthy Foods Lab., Food Science and Technology DepartmentCEBAS-CSICEspinardo, MurciaSpain
  4. 4.Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los AltosUniversidad de GuadalajaraTepatitlán de MorelosMexico
  5. 5.División de Ciencias Naturales y ExactasUniversidad de GuanajuatoGuanajuatoMexico

Personalised recommendations