Regulatory effects of paeoniflorin-6′-O-benzene sulfonate (CP-25) on dendritic cells maturation and activation via PGE2-EP4 signaling in adjuvant-induced arthritic rats

  • Xiao-yi Jia
  • Yan Chang
  • Xiao-jing Sun
  • Fang Wei
  • Yu-jing Wu
  • Xing Dai
  • Shu Xu
  • Hua-xun Wu
  • Chun Wang
  • Xue-zhi Yang
  • Wei WeiEmail author
Original Article


Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease. Dendritic cells (DCs) are one of the most powerful antigen-presenting cells, and they play an important role in RA pathogenesis. Prostaglandin E2 (PGE2) is a potent lipid mediator that can regulate the maturation and activation of DCs, but the molecular mechanisms have not been elucidated. In this study, both in vitro and in an RA rat model, we investigated the mechanisms involved by focusing on PGE2-mediated signaling and using a novel anti-inflammatory compound, paeoniflorin-6′-O-benzene sulfonate (CP-25). PGE2 combined with tumor necrosis factor-α promoted DC maturation and activation through EP4-cAMP signaling. Treatment with CP-25 increased the endocytic capacity of DCs induced by PGE2. CP-25 inhibited the potency of DCs induced by the EP4 receptor agonist, CAY10598, to stimulate allogeneic T cells. Consistent with these findings, the CAY10598-induced upregulation of DC surface activation markers and production of IL-23 was significantly inhibited by CP-25 in a concentration-dependent manner. In vivo administration of CP-25 alleviated adjuvant arthritis (AA) in rats through inhibition of DC maturation and activation. Our results indicate that PGE2-EP4-cAMP signal hyperfunction can lead to abnormal activation of DC functions, which correlates with the course of disease in AA rats and provides a possible treatment target. The inhibition of DC maturation and activation by CP-25 interference of the PGE2-EP4 pathway may significantly contribute to the immunoregulatory profile of CP-25 when used to treat RA and other immune cell-mediated disorders.


Adjuvant-induced arthritis Paeoniflorin-6′-O-benzene sulfonate Dendritic cell PGE2 EP receptor cAMP 



Rat adjuvant-induced arthritis


Bone marrow-derived DCs


Complete Freund’s adjuvant


Paeoniflorin-6′-O-benzene sulfonate


Dendritic cell


Disease-modifying antirheumatic drugs


Enzyme-linked immunosorbent assay


Fetal calf serum


Mixed lymphocyte reaction;






Prostaglandin E2


Quantification via real-time PCR


Rheumatoid arthritis


Tumor necrosis factor-α


Total glucosides of peony



This work was supported by the National Natural Science Foundation of China (81330081, 31200675, 81573443, 81603362), by the Anhui Province Nature Science Foundation in the University (KJ2015A317), by Anhui Province Natural Science Fund (outstanding youth) (170808J10).

Author contributions

WW and YC conceived and designed the study. XYJ designed and performed most of the experiments, and wrote the manuscript. FW, XD, XJS, SX and XZY performed experiments. YJW carried out the flow cytometry assays and helped to revise the manuscript. HXW and CW participated in the design of the study and helped to revise the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Aghdami N, Gharibdoost F, Moazzeni SM (2008) Experimental autoimmune encephalomyelitis (EAE) induced by antigen pulsed dendritic cells in the C57BL/6 mouse: Influence of injection route. Exp Anim 57:45–55CrossRefGoogle Scholar
  2. Ahmed MS, Bae YS (2016) Dendritic Cell-based Immunotherapy for Rheumatoid Arthritis: from Bench to Bedside. Immune Netw 16:44–51CrossRefGoogle Scholar
  3. Balanescu A, Nat R, Regalia T, Radu E, Bojinca V, Ionescu R, Predescu V, Popescu E, Predeţeanu D (2003) Correlation between the immunophenotypical presentation of dendritic cells and the clinical response to anti-rheumatic treatment in rheumatoid arthritis. Rom J Intern Med 41:255–267Google Scholar
  4. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252CrossRefGoogle Scholar
  5. Chang Y, Jia X, Wei F, Wang C, Sun X, Xu S, Yang X, Zhao Y, Chen J, Wu H, Zhang L, Wei W (2016) CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage. Sci Rep 6:26239CrossRefGoogle Scholar
  6. Chen J, Wang Y, Wu H, Yan S, Chang Y, Wei W (2018) A modified compound from paeoniflorin, CP-25, suppressed immune responses and synovium inflammation in collagen-induced arthritis mice. Front Pharmacol 9:563CrossRefGoogle Scholar
  7. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Natur 423:356–361CrossRefGoogle Scholar
  8. Flores-Borja F, Mauri C, Ehrenstein MR (2008) Restoring the balance: harnessing regulatory T cells for therapy in rheumatoid arthritis. Eur J Immunol 38:934–937CrossRefGoogle Scholar
  9. Grauer O, Wohlleben G, Seubert S, Weishaupt A, Kämpgen E, Gold R (2002) Analysis of maturation states of rat bone marrow-derived dendritic cells using an improved culture technique. Histochem Cell Biol 117:351–362CrossRefGoogle Scholar
  10. Hackstein H, Thomson AW (2004) Dendritic cells: Emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 4:24–34CrossRefGoogle Scholar
  11. Harizi H, Grosset C, Gualde N (2003) Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes. J Leukoc Biol 73:756–763CrossRefGoogle Scholar
  12. Hayashi S, Miura Y, Tateishi K, Takahashi M, Kurosaka M (2010) Decoy receptor 3 is highly expressed in patients with rheumatoid arthritis. Mod Rheumatol 20:63–68CrossRefGoogle Scholar
  13. Van Helden SF, Krooshoop DJ, Broers KC, Raymakers RA, Figdor CG, van Leeuwen FN (2006) A critical role for prostaglandin E2 in podosome dissolution and induction of highspeed migration during dendritic cell maturation. J Immunol 177:1567–1574CrossRefGoogle Scholar
  14. Honda T, Segi-Nishida E, Miyachi Y, Narumiya S (2006) Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. J Exp Med 203:325–335CrossRefGoogle Scholar
  15. Jia XY, Chang Y, Sun XJ, Dai X, Wei W (2014) The role of prostaglandin E2 receptor signaling of dendritic cells in rheumatoid arthritis. Int Immunopharmacol 23:163–169CrossRefGoogle Scholar
  16. Jia X, Wei F, Sun X, Chang Y, Xu S, Yang X, Wang C, Wei W (2016) CP-25 attenuates the inflammatory response of fibroblast-like synoviocytes co-cultured with BAFF-activated CD4(+) T cells. J Ethnopharmacol 189:194–201CrossRefGoogle Scholar
  17. Jia XY, Chang Y, Wei F, Dai X, Wu YJ, Sun XJ, Xu S, Wu HX, Wang C, Yang XZ, Wei W (2019) CP-25 reverses prostaglandin E4 receptor desensitization-induced fibroblast-like synoviocyte dysfunction via the G protein-coupled receptor kinase 2 in autoimmune arthritis. Acta Pharmacol Sin.
  18. Jiang GL, Nieves A, Im WB, Old DW, Dinh DT, Wheeler L (2007) The prevention of colitis by E Prostanoid receptor 4 agonist through enhancement of epithelium survival and regeneration. Pharmaol Exp Ther 320:22–28CrossRefGoogle Scholar
  19. Khayrullina T, Yen JH, Jing H, Ganea D (2008) In vitro differentiation of dendritic cells in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Th17 cells. J Immunol 181:721–735CrossRefGoogle Scholar
  20. Klareskog L, Catrina A, Paget S (2009) Rheumatoid arthritis. Lancet 373:659–672CrossRefGoogle Scholar
  21. Lebre MC, Jongbloed SL, Tas SW, Smeets TJ, McInnes IB, Tak PP (2008) Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP- dendritic cells with distinct cytokine profiles. Am J Pathol 172:940–950CrossRefGoogle Scholar
  22. Liu Y, Wang S, Shen L, Xu Y (2010) Effects of simvastatin on the function of dendritic cells in patients with rheumatic arthritis. J Huazhong Univ Sci Technol Med Sci 30:741–745CrossRefGoogle Scholar
  23. Martel-Pelletier J, Pelletier JP, Fahmi H (2003) Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum 33:155–167CrossRefGoogle Scholar
  24. McCoy JM, Wicks JR, Audoly LP (2002) The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J Clin Invest 110:651–658CrossRefGoogle Scholar
  25. Rieser C, Böck G, Klocker H, Bartsch G, Thurnher M (1997) Prostaglandin E2 and tumor necrosis factor a cooperate to activate human dendritic cells: synergistic activation of interleukin 12 production. J Exp Med 186:1603–1608CrossRefGoogle Scholar
  26. Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389–400CrossRefGoogle Scholar
  27. Santiago-Schwarz F, Anand P, Liu S, Carsons SE (2001) Dendritic cells (DCs) in rheumatoid arthritis (RA): progenitor cells and soluble factors contained in RA synovial fluid yield a subset of myeloid DCs that preferentially activate Th1 inflammatory-type responses. J Immunol 167:1758–1768CrossRefGoogle Scholar
  28. Sarkar S, Fox DA (2005) Dendritic cells in rheumatoid arthritis. Front Biosci 10:656–665CrossRefGoogle Scholar
  29. Schirmer C, Klein C, von Bergen M, Simon JC, Saalbach A (2010) Human fibroblasts support the expansion of IL-17-producing T cells via up-regulation of IL-23 production by dendritic cells. Blood 16:1715–1725CrossRefGoogle Scholar
  30. Scott DL, Wolfe F, Huizinga TW (2010) Rheumatoid arthritis. Lancet 376:1094–1108CrossRefGoogle Scholar
  31. Sheibanie AF, Tadmori I, Jing H, Vassiliou E, Ganea D (2004) Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J 18:1318–1320CrossRefGoogle Scholar
  32. Singh P, Hoggatt J, Hu P, Speth JM, Fukuda S, Breyer RM, Pelus LM (2012) Blockade of prostaglandin E2 signaling through EP1 and EP3 receptors attenuates Flt3L-dependent dendritic cell development from hematopoietic progenitor cells. Blood 119:1671–1682CrossRefGoogle Scholar
  33. Swart JF, Wulffraat NM (2014) Mesenchymal stromal cells for treatment of arthritis. Best Pract Res Clin Rheumatol 28:589–603CrossRefGoogle Scholar
  34. Thomas R, MacDonald KP, Pettit AR, Cavanagh LL, Padmanabha J, Zehntner S (1999) Dendritic cells and the pathogenesis of rheumatoid arthritis. J Leukoc Biol 66:286–292CrossRefGoogle Scholar
  35. Trebino CE, Stock JL, Gibbons CP, Naiman BM, Wachtmann TS, Umland JP, Pandher K, Lapointe JM, Saha S, Roach ML, Carter D, Thomas NA, Durtschi BA, McNeish JD, Hambor JE, Jakobsson PJ, Carty TJ, Perez JR, Audoly LP (2003) Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci USA 100:9044–9049CrossRefGoogle Scholar
  36. Vassiliou E, Jing H, Ganea D (2003) Prostaglandin E2 inhibits TNF-α production in murine bone marrow-derived dendritic cells. Cell Immunol 223:120–132CrossRefGoogle Scholar
  37. Wang Y, Han CC, Cui D, Luo TT, Li Y, Zhang Y, Ma Y, Wei W (2018) Immunomodulatory effects of CP-25 on splenic T cells of rats with adjuvant arthritis. Inflammation 41:1049–1063CrossRefGoogle Scholar
  38. Wu H, Chen J, Song S, Yuan P, Liu L, Zhang Y, Zhou A, Chang Y, Zhang L, Wei W (2016) β2-adrenoceptor signaling reduction in dendritic cells is involved in the inflammatory response in adjuvant-induced arthritic rats. Sci Rep 6:24548CrossRefGoogle Scholar
  39. Wu YJ, Chen HS, Chen WS, Dong J, Dong XJ, Dai X, Huang Q, Wei W (2018) CP-25 Attenuates the Activation of CD4(+) T Cells Stimulated with Immunoglobulin D in Human. Front Pharmacol 9:4CrossRefGoogle Scholar
  40. Yamazaki S, Inaba K, Tarbell KV, Steinman RM (2006) Dendritic cells expand antigen-specific Foxp3+CD25+CD4+ regulatory T cells including suppressors of alloreactivity. Immunol Rev 212:314–329CrossRefGoogle Scholar
  41. Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, Morrow JD, Shyr Y, Boothby M, Joyce S, Carbone DP, Breyer RM (2003) Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 111:727–735CrossRefGoogle Scholar
  42. Yang X, Zhao Y, Jia X, Wang C, Wu Y, Zhang L, Chang Y, Wei W (2019) CP-25 combined with MTX/LEF ameliorates the progression of adjuvant-induced arthritis by the inhibition on GRK2 translocation. Biomed Pharmacother 110:834–843CrossRefGoogle Scholar
  43. Yen JH, Kocieda VP, Jing H, Ganea D (2011) Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. J Biol Chem 286:38913–38923CrossRefGoogle Scholar
  44. Zhang F, Shu JL, Li Y, Wu YJ, Zhang XZ, Han L, Tang XY, Wang C, Wang QT, Chen JY, Chang Y, Wu HX, Zhang LL, Wei W (2017) CP-25, a novel anti-inflammatory and immunomodulatory drug, inhibits the functions of activated human B cells through regulating BAFF and TNF-alpha signaling and comparative efficacy with biological agents. Front Pharmacol 8:933CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiao-yi Jia
    • 1
    • 2
  • Yan Chang
    • 1
  • Xiao-jing Sun
    • 1
  • Fang Wei
    • 1
  • Yu-jing Wu
    • 1
  • Xing Dai
    • 1
  • Shu Xu
    • 1
  • Hua-xun Wu
    • 1
  • Chun Wang
    • 1
  • Xue-zhi Yang
    • 1
  • Wei Wei
    • 1
    Email author
  1. 1.Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune MedicineAnhui Medical UniversityHefeiChina
  2. 2.School of PharmacyAnhui University of Chinese MedicineHefeiChina

Personalised recommendations