Antipyretic effect of phytol, possibly via 5KIR-dependent COX-2 inhibition pathway

  • Muhammad Torequl IslamEmail author
Short Communication



This study is aimed at the evaluation of antipyretic effect of PHY in yeast-induced hyperthermia rats. Additionally, possible mechanism of antipyretic action of PHY has been also studied by molecular docking study.


Adult male Wistar albino rats were treated with PHY at 100, 150 and 200 mg/kg in 0.05% Tween-80 dissolved in 0.9% NaCl solution. PHY was also given at 200 mg/kg with ibuprofen (IBU) 12.5 mg/kg (p.o.) or paracetamol (PARA) 100 mg/kg (p.o.) to see the combined effect of PHY in animals. In silico study of PHY was performed against cyclooxygenase (COX) enzymes (COX-1 and -2) proteins.


PHY exhibited the antipyretic effect in febrile rats in a dose and time dependent manner. PHY 200 mg/kg co-treated with IBU12.5 or PARA100 exhibited greater antipyretic effect than the PHY or NSAIDs individual groups. Data from the computational study reveal that 5KIR of COX-2 is the most efficient receptor protein to which PHY interacts.


PHY attributed an antipyretic effect, possibly via 5KIR-dependent COX-2 inhibition pathway.


Phytol Antipyretic effect 5KIR COX-2 


Compliance with ethical standadrs

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10787_2019_574_MOESM1_ESM.docx (106 kb)
Supplementary material 1 (docx 106 kb)


  1. Bang M, Choi S, Jang T, Kim S, Kwon O, Kang T (2002) Phytol, SSADH inhibitory diterpenoid of Lactuca sativa. Arch Pharm Res (Seoul) 25:643–646CrossRefGoogle Scholar
  2. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084CrossRefGoogle Scholar
  3. Chen Z, Wang G, Xu Z, Wang J, Yu Y, Cai T, Shao Q, Shi J, Zhu W (2016) How do distance and solvent affect halogen bonding involving negatively charged donors? J Phys Chem B 120(34):8784–8793CrossRefGoogle Scholar
  4. Costa JP, Ferreira PB, De Sousa DP, Jordan J, Freitas RM (2012) Anticonvulsant effect of phytol in a pilocarpine model in mice. Neurosci Lett 523:115–118CrossRefGoogle Scholar
  5. Costa JP, de Oliveira GAL, de Almeida AAC, Islam MT, de Sousa DP, de Freitas RM (2014a) Anxiolytic-like effects of phytol: possible involvement of GABAergic transmission. Brain Res 1547:34–42CrossRefGoogle Scholar
  6. Costa JP, Oliveira JS, Junior LMR, de Freitas RM (2014b) Phytol a natural diterpenoid with pharmacological applications on central nervous system: a review. Recent Pat Biotechnol 8:194–205CrossRefGoogle Scholar
  7. DeLano WL (2002) The pymol molecular graphics system. Schro¨Dinger LLC wwwpymolorg Version 1. Link:
  8. Eliaser EM, Ho JH, Hashim NM, Rukayadi Y, Ee GCL, Razis AFA (2018) Phytochemical constituents and biological activities of melicope lunu-ankenda. Molecules 23:2708CrossRefGoogle Scholar
  9. Ghanem CI, Pérez MJ, Manautou JE, Mottino AD (2016) Acetaminophen from liver to brain: new insights into drug pharmacological action and toxicity. Pharmacol Res 109:119–131CrossRefGoogle Scholar
  10. Gonçalves SMC, Silva GN, Pitta IDR, Rêgo MJBM, Gnoato SCB, Pitta MGDR (2018) Novel betulin derivatives inhibit IFN-γ and modulates COX-2 expression. Nat Prod Res 22:1–10Google Scholar
  11. Hunter CA (2004) Quantifying Intermolecular Interactions: Guidelines for the Molecular Recognition Toolbox. Angew Chem Int Ed 43:5310–5324CrossRefGoogle Scholar
  12. Islam MT, Alencar MVOB, Machado KC, Machado KC, Melo-Cavalcante AAC, Sousa DP, Freitas RM (2015) Phytol in a pharma-medico-stance. Chem Biol Interact 2015(240):60–73CrossRefGoogle Scholar
  13. Islam MT, da Mata AM, de Aguiar RP, Paz MF, de Alencar MV, Ferreira PM, de Carvalho Melo-Cavalcante AA (2016a) Therapeutic potential of essential oils focusing on diterpenes. Phytother Res 30:1420–1444CrossRefGoogle Scholar
  14. Islam MT, Streck L, Paz MFCJ, Sousa JMC, Alencar MVOB, Mata AMOF, Carvalho RM, Jose Santos JVO, Silva-Junior AA, Ferreira PMP, Melo-Cavalcante AAC (2016b) Preparation of phytol-loaded nanoemulsion and screening for antioxidant capacity. Int Arch Med 9(70):1–15Google Scholar
  15. Islam MT, Ali ES, Uddin SJ, Shaw S, Islam MA, Ahmed MI, Shill MC, Karmakar UK, Yarla NS, Khan IN, Billah MM, Pieczynska MD, Zengin G, Malainer C, Nicoletti F, Gulei D, Berindan-Neagoe I, Apostolov A, Banach M, Yeung AWK, El-Demerdash A, Xiao J, Dey P, Yele S, Jóźwik A, Strzałkowska N, Marchewka J, Rengasamy KRR, Horbańczuk J, Kamal MA, Mubarak MS, Mishra SK, Shilpi JA, Atanasov AG (2018) Phytol: a review of biomedical activities. Food Chem Toxicol 121:82–94CrossRefGoogle Scholar
  16. Nakanishi T, Anraku M, Suzuki R, Kono T, Erickson L, Kawahara S (2016) Novel immunomodulatory effects of phytanic acid and its related substances in mice. J Funct Foods 21:283–289CrossRefGoogle Scholar
  17. Pearson RG (1995) The HSAB principle—more quantitative aspects. Inorg Chim Acta 240:93–98CrossRefGoogle Scholar
  18. Rahman A, Ali MT, Shawan MMAK, Sarwar MG, Khan MA, Halim MA (2016) Halogen-directed Drug Design for Alzheimer’s disease: a combined density functional and molecular docking study. Springerplus 5:1346CrossRefGoogle Scholar
  19. Rao P, Knaus EE (2008) Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci 11:81s–110sCrossRefGoogle Scholar
  20. Ribeiro RA, Vale ML, Thomazzi SM, Paschoalato ABP, Poole S, Ferreira SH, Cunha FQ (2000) Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol 387:111–118CrossRefGoogle Scholar
  21. Ryu K-R, Choi J-Y, Chung S, Kim D-H (2011) Anti-scratching behavioral effect of the essential oil and phytol isolated from artemisia princeps pamp mice. Planta Med 77:22–26CrossRefGoogle Scholar
  22. Santos AR, Vedana EM, De Freitas GA (1998) Anti-nociceptive effect of meloxicam in neurogenic and inflammatory nociceptive models in mice. Inflam Res 47:302–307CrossRefGoogle Scholar
  23. Santos CC, Salvadori MS, Mota VG, Costa LM, de Almeida AA, de Oliveira GA, Costa JP, de Sousa DP, de Freitas RM, de Almeida RN (2013) Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci J 2013:949452CrossRefGoogle Scholar
  24. Schiltz JC, Sawchenko PE (2002) Distinct brain vascular cell types manifest inducible cyclooxygenase expression as a function of the strength and nature of immune insults. J Neurosci 22:5606–5618CrossRefGoogle Scholar
  25. Schiltz JC, Sawchenko PE (2003) Signaling the brain in systemic inflammation: the role of perivascular cells. Front Biosci 8:1321–1329CrossRefGoogle Scholar
  26. Silva RO, Sousa FBM, Damasceno SRB, Carvalho NS, Silva VG, Oliveira FRMA, Sousa DP, Aragão KS, Barbosa ALR, Freitas RM, Medeiros JVR (2014) Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fund Clin Pharmacol 28:455–464CrossRefGoogle Scholar
  27. Tomazetti J, Avila DS, Ferreira AP, Martins JS, Souza FR, Royer C, Rubin MA, Oliveira MR, Bonacorso HG, Martins MA, Zanatta N, Mello CF (2005) Baker yeast-induced fever in young rats: characterization and validation of an animal model for antipyretics screening. J Neurosci Methods 147:29–35CrossRefGoogle Scholar
  28. Trandafir CC, Pouliot WA, Dudek FE, Ekstrand JJ (2015) Co-administration of subtherapeutic diazepam enhances neuroprotective effect of COX-2 inhibitor, NS-398, after lithium pilocarpine-induced status epilepticus. Neuroscience 284:601–610CrossRefGoogle Scholar
  29. Uttra AM, Alamgeer Shahzad M, Shabbir A, Jahan S (2018) Ephedra gerardiana aqueous ethanolic extract and fractions attenuate Freund Complete Adjuvant induced arthritis in Sprague Dawley rats by downregulating PGE2, COX2, IL-1β, IL-6, TNF-α, NF-kB and upregulating IL-4 and IL-10. J Ethnopharmacol 224:482–496CrossRefGoogle Scholar
  30. Vidensky S, Zhang Y, Hand T, Goellner J, Shaffer A, Isakson P, Andreasson K (2003) Neuronal overexpression of COX-2 results in dominant production of PGE2 and altered fever response. Neuromol Med 3(1):15–28CrossRefGoogle Scholar
  31. Vijayakaran K, Kannan K, Kesavan M, Suresh S, Sankar P, Tandan SK, Sarkar SN (2014) Arsenic reduces the antipyretic activity of paracetamol in rats: modulation of brain COX-2 activity and CB1 receptor expression. Environ Toxicol Pharmacol 37:438–447CrossRefGoogle Scholar
  32. Yang ZY, Yuan CX (2018) IL-17A promotes the neuroinflammation and cognitive function in sevoflurane anesthetized aged rats via activation of NF-κB signaling pathway. BMC Anesthesiol 18:147CrossRefGoogle Scholar
  33. Yang QW, Mou L, Lv FL, Zhu PF, Wang ZG, Jiang JX, Wang JZ (2005) Novel TLR4-antagonizing peptides inhibit LPS-induced release of inflammatory mediators by monocytes. Biochem Biophys Res Commun 329:846–854CrossRefGoogle Scholar
  34. Zeisberger E (1999) From humoral fever to neuroimmunological control of fever. J Therm Biol 24:286–326CrossRefGoogle Scholar
  35. Zhu ZZ, Ma KJ, Ran X, Zhang H, Zheng CJ, Han T, Zhang QY, Qin LP (2011) Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether fraction from the ethanol extract of Desmodium podocarpum. J Ethnopharmacol 133:1126–1131CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of PharmacyTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations