Black pepper and its bioactive constituent piperine: promising therapeutic strategies for oral lichen planus

  • Jing-Ya Yang
  • Jing Zhang
  • Gang Zhou


Oral lichen planus (OLP) is a common T cell-mediated chronic inflammatory disease with malignant potential and unclear etiology. The present study suggests that antigen-specific mechanisms in which dentritic cells, T lymphocytes and NF-κB signaling pathway play critical roles, are involved in the pathogenesis of OLP. Additionally, it has been indicated that altered expression of cyclooxygenase 2 (COX-2) and imbalanced oxidant-antioxidant status as well as psychological issue may act as promoters to the development of OLP. Therapies for OLP are primarily aimed to control symptoms and a specific cure is not yet available. Black pepper and its principle bioactive compound piperine have been reported to possess remarkable pharmacological activities. Not only has piperine been evidenced to exhibit repressive effects on the maturation of dentritic cells, the proliferation, activation and function of T lymphocytes as well as the NF-κB signaling pathway, but also to suppress the overproduction of COX-2 and weaken the oxidative stress. Furthermore, piperine might be a possible agent for alleviating psychological disorders and preventing carcinogenesis. Given all these into consideration, piperine may be a novel and effective therapeutic strategy for OLP.


Black pepper Piperine Oral lichen planus 



This work was supported by grants from the National Natural Science Foundation of China (nos. 81771080, 81371147) to Gang Zhou.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest regarding the publication of this paper.


  1. Abdel HRM, Fawzy MM, Metwally D et al (2012) DNA polymorphisms and tissue cyclooxygenase-2 expression in oral lichen planus: a case–control study. J Eur Acad Dermatol Venereol 26(9):1122–1126CrossRefGoogle Scholar
  2. Abdolsamadi H, Rafieian N, Goodarzi MT et al (2014) Levels of salivary antioxidant vitamins and lipid peroxidation in patients with oral lichen planus and healthy individuals. Chonnam Med J. 50(2):58–62PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agha-Hosseini F, Mirzaii-Dizgah I, Mikaili S, Abdollahi M (2009) Increased salivary lipid peroxidation in human subjects with oral lichen planus. Int J Dent Hyg. 7(4):246–250PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alrashdan MS, Cirillo N, McCullough M (2016) Oral lichen planus: a literature review and update. Arch Dermatol Res 308(8):539–551PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alshahrani S, Baccaglini L (2014) Psychological screening test results for stress, depression, and anxiety are variably associated with clinical severity of recurrent aphthous stomatitis and oral lichen planus. J Evid Based Dent Pract. 14(4):206–208PubMedCrossRefGoogle Scholar
  6. Alves MG, Do Carmo Carvalho BF, Balducci I, Cabral LA, Nicodemo D, Almeida JD (2015) Emotional assessment of patients with oral lichen planus. Int J Dermatol 54(1):29–32PubMedCrossRefGoogle Scholar
  7. Amirchaghmaghi M, Hashemy SI, Alirezaei B et al (2016) Evaluation of plasma isoprostane in patients with oral lichen planus. J Dent (Shiraz). 17(1):21–25PubMedCentralGoogle Scholar
  8. Azizi A, Farshchi F (2012) Comparison of salivary and plasma antioxidant levels in lichen planus patients and healthy subjects. J Oral Pathol Med 41(7):524–526PubMedGoogle Scholar
  9. Bae GS, Kim MS, Jung WS et al (2010) Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. Eur J Pharmacol 642(1–3):154–162PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bae GS, Kim JJ, Park KC et al (2012) Piperine inhibits lipopolysaccharide-induced maturation of bone-marrow-derived dendritic cells through inhibition of ERK and JNK activation. Phytother Res. 26(12):1893–1897PubMedCrossRefGoogle Scholar
  11. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow. Lancet 357(9255):539–545CrossRefGoogle Scholar
  12. Bang JS, Oh DH, Choi HM et al (2009) Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther. 11(2):R49PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barrett AW, Cruchley AT, Williams DM (1996) Oral mucosal Langerhans’ cells. Crit Rev Oral Biol Med 7(1):36–58PubMedCrossRefGoogle Scholar
  14. Battino M, Greabu M, Totan A et al (2008) Oxidative stress markers in oral lichen planus. BioFactors 33(4):301–310PubMedCrossRefGoogle Scholar
  15. Bayer AL, Pugliese A, Malek TR (2013) The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunol Res 57(1–3):197–209PubMedPubMedCentralCrossRefGoogle Scholar
  16. Buczko P, Zalewska A, Szarmach I (2015) Saliva and oxidative stress in oral cavity and in some systemic disorders. J Physiol Pharmacol 66(1):3–9PubMedGoogle Scholar
  17. Butt MS, Pasha I, Sultan MT, Randhawa MA, Saeed F, Ahmed W (2013) Black pepper and health claims: a comprehensive treatise. Crit Rev Food Sci Nutr 53(9):875–886PubMedCrossRefGoogle Scholar
  18. Chen Y, Zhang W, Geng N, Tian K, Jack WL (2008) MMPs, TIMP-2, and TGF-beta1 in the cancerization of oral lichen planus. Head Neck 30(9):1237–1245PubMedCrossRefGoogle Scholar
  19. Chuchawankul S, Khorana N, Poovorawan Y (2012) Piperine inhibits cytokine production by human peripheral blood mononuclear cells. Genet Mol Res 11(1):617–627PubMedCrossRefGoogle Scholar
  20. Cortés-Ramírez DA, Rodríguez-Tojo MJ, Gainza-Cirauqui ML, Martínez-Conde R, Aguirre-Urizar JM (2010) Overexpression of cyclooxygenase-2 as a biomarker in different subtypes of the oral lichenoid disease. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110(6):738–743PubMedCrossRefGoogle Scholar
  21. Crincoli V, Di BMB, Scivetti M, Lucchese A, Tecco S, Festa F (2011) Oral lichen planus: update on etiopathogenesis, diagnosis and treatment. Immunopharmacol Immunotoxicol 33(1):11–20PubMedCrossRefGoogle Scholar
  22. Danielsson K, Ebrahimi M, Wahlin YB, Nylander K, Boldrup L (2012) Increased levels of COX-2 in oral lichen planus supports an autoimmune cause of the disease. J Eur Acad Dermatol Venereol 26(11):1415–1419PubMedCrossRefGoogle Scholar
  23. Darczuk D, Krzysciak W, Vyhouskaya P et al (2016) Salivary oxidative status in patients with oral lichen planus. J Physiol Pharmacol 67(6):885–894PubMedGoogle Scholar
  24. Deng Y, Sriwiriyajan S, Tedasen A, Hiransai P, Graidist P (2016) Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. J Ethnopharmacol 188:87–95PubMedCrossRefGoogle Scholar
  25. Derosa G, Maffioli P, Sahebkar A (2016) Piperine and its role in chronic diseases. Adv Exp Med Biol 928:173–184PubMedCrossRefGoogle Scholar
  26. Doucette CD, Greenshields AL, Liwski RS, Hoskin DW (2015a) Piperine blocks interleukin-2-driven cell cycle progression in CTLL-2 T lymphocytes by inhibiting multiple signal transduction pathways. Toxicol Lett 234(1):1–12PubMedCrossRefGoogle Scholar
  27. Doucette CD, Rodgers G, Liwski RS, Hoskin DW (2015b) Piperine from black pepper inhibits activation-induced proliferation and effector function of T lymphocytes. J Cell Biochem 116(11):2577–2588PubMedCrossRefGoogle Scholar
  28. Edwards PC, Kelsch R (2002) Oral lichen planus: clinical presentation and management. J Can Dent Assoc 68(8):494–499PubMedGoogle Scholar
  29. El-Rifaie AA, Rashed LA, Doss RW (2015) The role of cyclooxygenase-2 and prostaglandin E2 in the pathogenesis of cutaneous lichen planus. Clin Exp Dermatol 40(8):903–907PubMedCrossRefGoogle Scholar
  30. Farthing PM, Matear P, Cruchley AT (1990) The activation of Langerhans cells in oral lichen planus. J Oral Pathol Med 19(2):81–85PubMedCrossRefPubMedCentralGoogle Scholar
  31. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121(11):2381–2386PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fitzpatrick SG, Hirsch SA, Gordon SC (2014) The malignant transformation of oral lichen planus and oral lichenoid lesions: a systematic review. J Am Dent Assoc 145(1):45–56PubMedCrossRefGoogle Scholar
  33. Gavic L, Cigic L, Biocina LD, Gruden V, Gruden PJS (2014) The role of anxiety, depression, and psychological stress on the clinical status of recurrent aphthous stomatitis and oral lichen planus. J Oral Pathol Med 43(6):410–417PubMedCrossRefGoogle Scholar
  34. Girardi C, Luz C, Cherubini K, de Figueiredo MA, Nunes ML, Salum FG (2011) Salivary cortisol and dehydroepiandrosterone (DHEA) levels, psychological factors in patients with oral lichen planus. Arch Oral Biol 56(9):864–868PubMedCrossRefGoogle Scholar
  35. Hritcu L, Noumedem JA, Cioanca O, Hancianu M, Postu P, Mihasan M (2015) Anxiolytic and antidepressant profile of the methanolic extract of Piper nigrum fruits in beta-amyloid (1-42) rat model of Alzheimer’s disease. Behav Brain Funct 11:13PubMedPubMedCentralCrossRefGoogle Scholar
  36. Huang W, Chen Z, Wang Q et al (2013) Piperine potentiates the antidepressant-like effect of trans-resveratrol: involvement of monoaminergic system. Metab Brain Dis 28(4):585–595PubMedCrossRefGoogle Scholar
  37. Hwang YP, Yun HJ, Kim HG et al (2011) Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCα/ERK1/2-dependent matrix metalloproteinase-9 expression. Toxicol Lett 203(1):9–19PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ivanovski K, Nakova M, Warburton G et al (2005) Psychological profile in oral lichen planus. J Clin Periodontol 32(10):1034–1040PubMedCrossRefGoogle Scholar
  39. Jungell P (1991) Oral lichen planus. A review. Int J Oral Maxillofac Surg. 20(3):129–135PubMedCrossRefGoogle Scholar
  40. Kannan A, Huang W, Huang F, August A (2012) Signal transduction via the T cell antigen receptor in naïve and effector/memory T cells. Int J Biochem Cell Biol 44(12):2129–2134PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kawanishi S, Hiraku Y, Pinlaor S, Ma N (2006) Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 387(4):365–372PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kesarwala AH, Krishna MC, Mitchell JB (2016) Oxidative stress in oral diseases. Oral Dis 22(1):9–18PubMedCrossRefPubMedCentralGoogle Scholar
  43. Khom S, Strommer B, Schöffmann A et al (2013) GABAA receptor modulation by piperine and a non-TRPV1 activating derivative. Biochem Pharmacol 85(12):1827–1836PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kim HG, Han EH, Jang WS et al (2012) Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem Toxicol 50(7):2342–2348PubMedCrossRefPubMedCentralGoogle Scholar
  45. Koleva II, van Beek TA, Soffers AE, Dusemund B, Rietjens IM (2012) Alkaloids in the human food chain–natural occurrence and possible adverse effects. Mol Nutr Food Res 56(1):30–52PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kong LD, Cheng CH, Tan RX (2004) Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones. J Ethnopharmacol 91(2–3):351–355PubMedCrossRefPubMedCentralGoogle Scholar
  47. Koray M, Dülger O, Ak G et al (2003) The evaluation of anxiety and salivary cortisol levels in patients with oral lichen planus. Oral Dis 9(6):298–301PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kumar S, Singhal V, Roshan R, Sharma A, Rembhotkar GW, Ghosh B (2007) Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappaB and IkappaB kinase activation. Eur J Pharmacol 575(1–3):177–186PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lai LH, Fu QH, Liu Y et al (2012) Piperine suppresses tumor growth and metastasis in vitro and in vivo in a 4T1 murine breast cancer model. Acta Pharmacol Sin 33(4):523–530PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lee SA, Hong SS, Han XH et al (2005) Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem Pharm Bull (Tokyo). 53(7):832–835PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lee SH, Kim HY, Back SY, Han HK (2018) Piperine-mediated drug interactions and formulation strategy for piperine: recent advances and future perspectives. Expert Opin Drug Metab Toxicol. 14(1):43–57PubMedCrossRefPubMedCentralGoogle Scholar
  52. Li TJ, Cui J (2013) COX-2, MMP-7 expression in oral lichen planus and oral squamous cell carcinoma. Asian Pac J Trop Med. 6(8):640–643PubMedCrossRefPubMedCentralGoogle Scholar
  53. Li S, Wang C, Li W, Koike K, Nikaido T, Wang MW (2007a) Antidepressant-like effects of piperine and its derivative, antiepilepsirine. J Asian Nat Prod Res 9(3–5):421–430PubMedCrossRefPubMedCentralGoogle Scholar
  54. Li S, Wang C, Wang M, Li W, Matsumoto K, Tang Y (2007b) Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sci 80(15):1373–1381PubMedCrossRefPubMedCentralGoogle Scholar
  55. Liu Y, Yadev VR, Aggarwal BB, Nair MG (2010) Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B. Nat Prod Commun 5(8):1253–1257PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lodi G, Scully C, Carrozzo M, Griffiths M, Sugerman PB, Thongprasom K (2005) Current controversies in oral lichen planus: report of an international consensus meeting. Part 1. Viral infections and etiopathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 100(1):40–51PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lu R, Zhou G, Du G, Xu X, Yang J, Hu J (2011) Expression of T-bet and GATA-3 in peripheral blood mononuclear cells of patients with oral lichen planus. Arch Oral Biol 56(5):499–505PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lu R, Zhang J, Sun W, Du G, Zhou G (2015) Inflammation-related cytokines in oral lichen planus: an overview. J Oral Pathol Med 44(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lu Y, Liu J, Li H, Gu L (2016) Piperine ameliorates lipopolysaccharide-induced acute lung injury via modulating NF-κB signaling pathways. Inflammation. 39(1):303–308PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lundqvist EN, Wahlin YB, Bergdahl M, Bergdahl J (2006) Psychological health in patients with genital and oral erosive lichen planus. J Eur Acad Dermatol Venereol 20(6):661–666PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lysitsa S, Samson J, Gerber-Wicht C, Lang U, Lombardi T (2008) COX-2 expression in oral lichen planus. Dermatology 217(2):150–155PubMedCrossRefPubMedCentralGoogle Scholar
  62. Manayi A, Nabavi SM, Setzer WN, Jafari S (2017) Piperine as a potential anti-cancer agent: a review on preclinical studies. Curr Med Chem. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mao QQ, Xian YF, Ip SP, Che CT (2011) Involvement of serotonergic system in the antidepressant-like effect of piperine. Prog Neuropsychopharmacol Biol Psychiatry 35(4):1144–1147PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mao QQ, Huang Z, Zhong XM, Xian YF, Ip SP (2014a) Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behav Brain Res 261:140–145PubMedCrossRefPubMedCentralGoogle Scholar
  65. Mao QQ, Huang Z, Zhong XM, Xian YF, Ip SP (2014b) Piperine reverses chronic unpredictable mild stress-induced behavioral and biochemical alterations in rats. Cell Mol Neurobiol 34(3):403–408PubMedCrossRefPubMedCentralGoogle Scholar
  66. Maraskovsky E, Chen WF, Shortman K (1989) IL-2 and IFN-gamma are two necessary lymphokines in the development of cytolytic T cells. J Immunol. 143(4):1210–1214PubMedPubMedCentralGoogle Scholar
  67. Meghwal M, Goswami TK (2013) Piper nigrum and piperine: an update. Phytother Res. 27(8):1121–1130PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mignogna MD, Fedele S, Lo RL, Lo ML, Bucci E (2004) Immune activation and chronic inflammation as the cause of malignancy in oral lichen planus: is there any evidence. Oral Oncol 40(2):120–130PubMedCrossRefPubMedCentralGoogle Scholar
  69. Misra S, Sharma K (2014) COX-2 signaling and cancer: new players in old arena. Curr Drug Targets 15(3):347–359PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mittal R, Gupta RL (2000) In vitro antioxidant activity of piperine. Methods Find Exp Clin Pharmacol 22(5):271–274PubMedCrossRefGoogle Scholar
  71. Myers LK, Kang AH, Postlethwaite AE et al (2000) The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. Arthritis Rheum 43(12):2687–2693PubMedCrossRefGoogle Scholar
  72. Nadendla LK, Meduri V, Paramkusam G, Pachava KR (2014) Association of salivary cortisol and anxiety levels in lichen planus patients. J Clin Diagn Res. 8(12):ZC01–ZC03PubMedPubMedCentralGoogle Scholar
  73. Nagler RM, Klein I, Zarzhevsky N, Drigues N, Reznick AZ (2002) Characterization of the differentiated antioxidant profile of human saliva. Free Radic Biol Med. 32(3):268–277PubMedCrossRefGoogle Scholar
  74. Nogueira PA, Carneiro S, Ramos-e-Silva M (2015) Oral lichen planus: an update on its pathogenesis. Int J Dermatol 54(9):1005–1010PubMedCrossRefPubMedCentralGoogle Scholar
  75. Payeras MR, Cherubini K, Figueiredo MA, Salum FG (2013) Oral lichen planus: focus on etiopathogenesis. Arch Oral Biol 58(9):1057–1069PubMedCrossRefPubMedCentralGoogle Scholar
  76. Peng Q, Zhang J, Ye X, Zhou G (2017) Tumor-like microenvironment in oral lichen planus: evidence of malignant transformation. Expert Rev Clin Immunol. 13(6):635–643PubMedCrossRefPubMedCentralGoogle Scholar
  77. Pippi R, Patini R, Ghiciuc CM et al (2014) Diurnal trajectories of salivary cortisol, salivary α-amylase and psychological profiles in oral lichen planus patients. J Biol Regul Homeost Agents 28(1):147–156PubMedPubMedCentralGoogle Scholar
  78. Pippi R, Romeo U, Santoro M, Del VA, Scully C, Petti S (2016) Psychological disorders and oral lichen planus: matched case-control study and literature review. Oral Dis 22(3):226–234PubMedCrossRefPubMedCentralGoogle Scholar
  79. Pradeep CR, Kuttan G (2004) Piperine is a potent inhibitor of nuclear factor-kappaB (NF-kappaB), c-Fos, CREB, ATF-2 and proinflammatory cytokine gene expression in B16F-10 melanoma cells. Int Immunopharmacol 4(14):1795–1803PubMedCrossRefPubMedCentralGoogle Scholar
  80. Prolo P, Chiappelli F, Cajulis E et al (2002) Psychoneuroimmunology in oral biology and medicine: the model of oral lichen planus. Ann N Y Acad Sci 966:429–440PubMedCrossRefGoogle Scholar
  81. Rauscher FM, Sanders RA, Watkins JB (2000) Effects of piperine on antioxidant pathways in tissues from normal and streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 14(6):329–334PubMedCrossRefGoogle Scholar
  82. Rekha VR, Sunil S, Rathy R (2017) Evaluation of oxidative stress markers in oral lichen planus. J Oral Maxillofac Pathol. 21(3):387–393PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rodgers G, Doucette CD, Soutar DA, Liwski RS, Hoskin DW (2016) Piperine impairs the migration and T cell-activating function of dendritic cells. Toxicol Lett 242:23–33PubMedCrossRefGoogle Scholar
  84. Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH, Shukla A (2010) Pathogenesis of oral lichen planus–a review. J Oral Pathol Med 39(10):729–734PubMedCrossRefGoogle Scholar
  85. Scrobotă I, Mocan T, Cătoi C, Bolfă P, Mureşan A, Băciuţ G (2011) Histopathological aspects and local implications of oxidative stress in patients with oral lichen planus. Rom J Morphol Embryol 52(4):1305–1309PubMedPubMedCentralGoogle Scholar
  86. Sezer E, Ozugurlu F, Ozyurt H, Sahin S, Etikan I (2007) Lipid peroxidation and antioxidant status in lichen planus. Clin Exp Dermatol 32(4):430–434PubMedCrossRefPubMedCentralGoogle Scholar
  87. Shah B, Ashok L, Sujatha GP (2009) Evaluation of salivary cortisol and psychological factors in patients with oral lichen planus. Indian J Dent Res. 20(3):288–292PubMedCrossRefPubMedCentralGoogle Scholar
  88. Shirzad A, Pouramir M, Seyedmajidi M, Jenabian N, Bijani A, Motallebnejad M (2014) Salivary total antioxidant capacity and lipid peroxidation in patients with erosive oral lichen planus. J Dent Res Dent Clin Dent Prospects. 8(1):35–39PubMedPubMedCentralGoogle Scholar
  89. Singh P, Grover J, Byatnal AA, Guddattu V, Radhakrishnan R, Solomon MC (2017) Elucidating the role of Cyclooxygenase-2 in the pathogenesis of oral lichen planus—an immunohistochemical study with supportive histochemical analysis. J Oral Pathol Med 46(5):381–386PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sloberg K, Jonsson R, Jontell M (1984) Assessment of Langerhans’ cells in oral lichen planus using monoclonal antibodies. J Oral Pathol 13(5):516–524PubMedCrossRefGoogle Scholar
  91. Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271(52):33157–33160PubMedCrossRefGoogle Scholar
  92. Srinivasan K (2007) Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr 47(8):735–748PubMedCrossRefGoogle Scholar
  93. Sugerman PB, Satterwhite K, Bigby M (2000) Autocytotoxic T-cell clones in lichen planus. Br J Dermatol 142(3):449–456PubMedCrossRefGoogle Scholar
  94. Sugerman PB, Savage NW, Walsh LJ et al (2002) The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med 13(4):350–365PubMedCrossRefGoogle Scholar
  95. Suzuki J, Ogawa M, Futamatsu H, Kosuge H, Tanaka H, Isobe M (2006) A cyclooxygenase-2 inhibitor alters Th1/Th2 cytokine balance and suppresses autoimmune myocarditis in rats. J Mol Cell Cardiol 40(5):688–695PubMedCrossRefGoogle Scholar
  96. Tadakamadla J, Kumar S, Lalloo R, Johnson NW (2017) Qualitative analysis of the impact of oral potentially malignant disorders on daily life activities. PLoS One 12(4):e0175531PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tvarijonaviciute A, Aznar-Cayuela C, Rubio CP, Ceron JJ, López-Jornet P (2017) Evaluation of salivary oxidate stress biomarkers, nitric oxide and C-reactive protein in patients with oral lichen planus and burning mouth syndrome. J Oral Pathol Med 46(5):387–392PubMedCrossRefGoogle Scholar
  98. Uma PK, Geervani P, Eggum BO (1993) Common Indian spices: nutrient composition, consumption and contribution to dietary value. Plant Foods Hum Nutr 44(2):137–148CrossRefGoogle Scholar
  99. Upadhyay RB, Carnelio S, Shenoy RP, Gyawali P, Mukherjee M (2010) Oxidative stress and antioxidant defense in oral lichen planus and oral lichenoid reaction. Scand J Clin Lab Invest 70(4):225–228PubMedCrossRefGoogle Scholar
  100. Upadhyay J, Upadhyay RB, Agrawal P, Jaitley S, Shekhar R (2013) Langerhans cells and their role in oral mucosal diseases. N Am J Med Sci. 5(9):505–514PubMedPubMedCentralCrossRefGoogle Scholar
  101. Vaibhav K, Shrivastava P, Javed H et al (2012) Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Mol Cell Biochem 367(1–2):73–84PubMedCrossRefGoogle Scholar
  102. Vallejo MJ, Huerta G, Cerero R, Seoane JM (2001) Anxiety and depression as risk factors for oral lichen planus. Dermatology 203(4):303–307PubMedCrossRefGoogle Scholar
  103. van der Waal I (2009) Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol 45(4–5):317–323PubMedCrossRefGoogle Scholar
  104. Vardell E (2015) Natural Medicines: a Complementary and Alternative Medicines Tool Combining Natural Standard and the Natural Medicines Comprehensive Database. Med Ref Serv Q. 34(4):461–470PubMedCrossRefGoogle Scholar
  105. Verma A, Kushwaha HN, Srivastava AK et al (2017) Piperine attenuates UV-R induced cell damage in human keratinocytes via NF-kB, Bax/Bcl-2 pathway: an application for photoprotection. J Photochem Photobiol, B 172:139–148CrossRefGoogle Scholar
  106. Vijayakumar RS, Surya D, Nalini N (2004) Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Rep. 9(2):105–110PubMedCrossRefGoogle Scholar
  107. Vlková B, Stanko P, Minárik G et al (2012) Salivary markers of oxidative stress in patients with oral premalignant lesions. Arch Oral Biol 57(12):1651–1656PubMedCrossRefGoogle Scholar
  108. Wattanathorn J, Chonpathompikunlert P, Muchimapura S, Priprem A, Tankamnerdthai O (2008) Piperine, the potential functional food for mood and cognitive disorders. Food Chem Toxicol 46(9):3106–3110PubMedCrossRefGoogle Scholar
  109. Ying X, Chen X, Cheng S, Shen Y, Peng L, Xu HZ (2013a) Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. Int Immunopharmacol 17(2):293–299PubMedCrossRefPubMedCentralGoogle Scholar
  110. Ying X, Yu K, Chen X et al (2013b) Piperine inhibits LPS induced expression of inflammatory mediators in RAW 264.7 cells. Cell Immunol. 285(1–2):49–54PubMedCrossRefGoogle Scholar
  111. Zaugg J, Baburin I, Strommer B, Kim HJ, Hering S, Hamburger M (2010) HPLC-based activity profiling: discovery of piperine as a positive GABA(A) receptor modulator targeting a benzodiazepine-independent binding site. J Nat Prod 73(2):185–191PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zhai WJ, Zhang ZB, Xu NN et al (2016) Piperine plays an anti-inflammatory role in staphylococcus aureus endometritis by inhibiting activation of NF-κB and MAPK pathways in mice. Evid Based Complement Alternat Med. 2016:8597208PubMedPubMedCentralGoogle Scholar
  113. Zhang L, Bertucci AM, Smith KA, Xu L, Datta SK (2007) Hyperexpression of cyclooxygenase 2 in the lupus immune system and effect of cyclooxygenase 2 inhibitor diet therapy in a murine model of systemic lupus erythematosus. Arthritis Rheum 56(12):4132–4141PubMedCrossRefGoogle Scholar
  114. Zhang J, Zhu X, Li H et al (2015) Piperine inhibits proliferation of human osteosarcoma cells via G2/M phase arrest and metastasis by suppressing MMP-2/-9 expression. Int Immunopharmacol 24(1):50–58PubMedCrossRefPubMedCentralGoogle Scholar
  115. Zhou XJ, Sugerman PB, Savage NW, Walsh LJ (2001) Matrix metalloproteinases and their inhibitors in oral lichen planus. J Cutan Pathol 28(2):72–82PubMedCrossRefPubMedCentralGoogle Scholar
  116. Zhou G, Xia K, Du GF et al (2009) Activation of nuclear factor-kappa B correlates with tumor necrosis factor-alpha in oral lichen planus: a clinicopathologic study in atrophic-erosive and reticular form. J Oral Pathol Med 38(7):559–564PubMedCrossRefPubMedCentralGoogle Scholar
  117. Zhou G, Zhang J, Ren XW, Hu JY, Du GF, Xu XY (2012) Increased B7-H1 expression on peripheral blood T cells in oral lichen planus correlated with disease severity. J Clin Immunol 32(4):794–801PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.The State Key Laboratory Breeding Base of Basic Science of Stomatology (HubeiMOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of Stomatology, Wuhan UniversityWuhanPeople’s Republic of China
  2. 2.Department of Oral MedicineSchool and Hospital of Stomatology, Wuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations