, Volume 26, Issue 5, pp 1293–1303 | Cite as

Propolis modulates NOS2/arginase-1 pathway in tropomyosin-induced experimental autoimmune uveitis

  • Kahina Touri
  • Houda Belguendouz
  • Oussama Medjeber
  • Zineb Djeraba
  • Karima Lahmar
  • Chafia Touil-BoukoffaEmail author
Original Article


In this study, we evaluated the preventive and curative effects of ethanolic extract of Propolis (EEP) during α-Tropomyosin-induced uveitis in an experimental model using Wistar rats, through the regulation of inducible nitric oxide synthase (NOS2) and arginase-1. In this context, rats received daily injection of EEP (100 mg/kg) for 5 days prior to immunization or for 9 days commencing 5 days post immunization with α-Tropomyosin extract, then were sacrificed at day 14. Histological examination, NOS2, arginase-1, and nuclear factor-κB (NF-κB) expression were evaluated in the retinas. Plasmatic production of nitric oxide (NO), urea, IL-4, and TNF-α was assessed. We have found that treatment with EEP substantially reduced the retinal histological damages induced by α-Tropomyosin. In the same context, a significant decrease of NO and TNF-α levels was noticed. Interestingly, EEP down-modulated NOS2 and NF-κB expression in retina. Also, an increase in urea and IL-4 levels was concomitant to an up-modulation of arginase-1 expression. Hence, it appears that EEP attenuated retinal damages through the induction of Th2 response and the inhibition of NF-κB/NOS2 pathway.


Propolis α-Tropomyosin Uveitis NOS2 Arginase-1 Immuno modulation 



The authors would like to thank the beekeeper Mohamed Kacioui for the generous gift of crude Propolis. Also, Fayçal Medjeber and Dalila Laid (Spectrol Lab. Algeria) for their technical assistance.

Compliance with ethical standards

Conflict of interest

The authors report no declarations of interest.


  1. Arroul-Lammali A, Djeraba Z, Belkhelfa M et al (2012) Early involvement of nitric oxide in mechanisms of pathogenesis of experimental autoimmune uveitis induced by interphotoreceptor retinoid-binding protein (IRBP). J Fr Ophtalmol 35:251–259CrossRefGoogle Scholar
  2. Baharav E, Weinberger A, Mor F (2006) Experimental models of Behçet’s disease. Drug Discov Today 3:11–14CrossRefGoogle Scholar
  3. Bankova V, de Castro SL (2000) Propolis: recent advances in chemistry and plant origin. Apidologie 31:3–15CrossRefGoogle Scholar
  4. Banskota AH, Yasuhiro Tezuka Y, Kadota S (2001) Recent progress in pharmacological research of Propolis. Phytother Res 15:561–571CrossRefGoogle Scholar
  5. Barroso MV, Cattani-Cavalieri I, Brito-Gitirana L et al (2017) Propolis reversed cigarette smoke-induced emphysema through macrophage alternative activation independent of Nrf2. Bio Med Chem 25:5557–5568CrossRefGoogle Scholar
  6. Belguendouz H, Lahmar-Belguendouz K, Messaoudene D et al (2015) Cytokines modulate the immune-metabolism interactions during Behçet disease: effect on arginine metabolism. Int J Inflamm 2015:1–9CrossRefGoogle Scholar
  7. Blonska M, Bronikowska J, Pietsz G et al (2004) Effects of ethanol extract of Propolis (EEP) and its flavones on inducible gene expression in J774A.1 macrophages. J Ethnopharmacol 91:25–30CrossRefGoogle Scholar
  8. Búfalo MC, Ferreira I, Costa G et al (2013) Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages. J Ethnopharmacol 149:84–92CrossRefGoogle Scholar
  9. Caspi RR, Chan C, Wiggert B et al (1990) The mouse as a model of experimental autoimmune uveoretinitis (EAU). Curr Eye Res 9:169–174CrossRefGoogle Scholar
  10. Choi JH, Roh KH, Oh H et al (2015) Caffeic acid phenethyl ester lessens disease symptoms in an experimental autoimmune uveoretinitis mouse model. Exp Eye Res 134:53–62CrossRefGoogle Scholar
  11. Corraliza IM, Soler G, Eichmann K et al (1995) Arginase induction by suppressors nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Bioch Biophy Res Commun 206:667–673CrossRefGoogle Scholar
  12. Djeraba Z, Arroul-Lammali A, Medjeber O et al (2010) Nitric oxide, biomarker of experimental autoimmune uveitis induced by S antigen. J Fr Ophtalmol 33:693–700CrossRefGoogle Scholar
  13. Emre S, Yılmaz Z, Öztürk F et al (2009) Propolis prevents the effects of chronic alcohol intake on ocular tissues. Ophthalmic Res 42:147–151CrossRefGoogle Scholar
  14. Ertürküner SP, Saraç EY, Göçmez SS et al (2016) Anti-inflammatory and ultrastructural effects of Turkish Propolis in a rat model of endotoxin-induced uveitis. Folia histo cyto 54:49–57Google Scholar
  15. Grange M, Davey RW (1990) Antibacterial properties of Propolis (bee glue). J R Soc Med 83:159–160CrossRefGoogle Scholar
  16. Hirose S, Kuwabara T, Nussenblatt RB et al (1985) Uveitis induced in primates by interphotoreceptor retinoid-binding protein. Arch Ophthalmol 104:1698–1702CrossRefGoogle Scholar
  17. Inokuchi Y, Shimazawa M, Nakajima Y et al (2006) Brazilian green propolis protects against retinal damage in vitro and in vivo. Evid Based Complement Altern Med 3(1):71–77CrossRefGoogle Scholar
  18. Kitamura H, Naoe Y, Kimura S et al (2013) Beneficial effects of Brazilian Propolis on type 2 diabetes in ob/ob mice. Adipocyte 4:227–236CrossRefGoogle Scholar
  19. Koga T, Koshiyama Y, Gotoh T et al (2002) Coinduction of nitric oxide synthase and arginine metabolic enzymes in endotoxin-induced uveitis rats. Exp Eye Res 75:659–667CrossRefGoogle Scholar
  20. Lahmar-Belguendouz K, Belguendouz H, Hartani D et al (2013) Effects of peroxynitrite derived from nitric oxide on cultured bovine ocular explants. J Fr Ophtalmol 36(1):41–49CrossRefGoogle Scholar
  21. Lin JJC, Helfman DM, Hughes SH et al (1985) Tropomyosin isoforms in chicken embryo fibroblasts: purification, characterization, and changes in Rous sarcoma virus-transformed cells. J Cell Biol 100:692–703CrossRefGoogle Scholar
  22. Liversidge J, Dick A, Gordon S (2002) Nitric oxide mediates apoptosis through formation of peroxynitrite and fas/fas-ligand interactions in experimental autoimmune uveitis. Am J Path 160:1–3CrossRefGoogle Scholar
  23. Mahesh SP, Li Z, Buggage R et al (2005) Alpha tropomyosin as a self-antigen in patients with Behçet’s disease. Clin Exp Immunol 140:368–375CrossRefGoogle Scholar
  24. Márquez N, Sancho R, Macho A et al (2004) Caffeic acid phenethyl ester inhibits t-cell activation by targeting both nuclear factor of activated t-cells and NF-B transcription factors. J Pharmacol Exp Ther 308(3):993–1001CrossRefGoogle Scholar
  25. Medjeber O, Touri K, Rafa H, et al. (2018) Ex vivo immunomodulatory effect of ethanolic extract of Propolis during Celiac disease: involvement of nitric oxide pathway. Inflammopharmacology (Epub ahead of print)Google Scholar
  26. Miguel MG, Nunes S, Dandlen SA et al (2012) Phenols, flavonoids and antioxidant activity of aqueous and methanolic extracts of Propolis (Apis mellifera L.) from Algarve, South Portugal. Food Sci Technol 34:16–23CrossRefGoogle Scholar
  27. Mor F, Weinberger A, Cohen IR (2002) Identification of alpha-tropomyosin as a target self-antigen in Behçet’s syndrome. Eur J Immunol 32:356–365CrossRefGoogle Scholar
  28. Mori M (2007) Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr 137:1616–1620CrossRefGoogle Scholar
  29. Orsi RO, Funari SRC, Soares AMVC et al (2000) Immunomodulatory action of Propolis on macrophage activation. J Venom Anim Toxins 6:1–9CrossRefGoogle Scholar
  30. Öztürk F, Kurt E, Emiroǧlu L, Sobaci G et al (1999) Effect of Propolis on endotoxin-induced uveitis in rabbits. Jpn J Ophthalmol 43:285–289CrossRefGoogle Scholar
  31. Pineton de Chambrun M, Wechsler B, Geri G et al (2012) New insights into the pathogenesis of Behçet’s disease. Autoimmun Rev 11:687–698CrossRefGoogle Scholar
  32. Rath M, Müller I, Kropf P et al (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:1–10CrossRefGoogle Scholar
  33. Sforcin JM (2007) Propolis and the immune system: a review. J Ethnopharmacol 113:1–14CrossRefGoogle Scholar
  34. Togashi H, Sasaki M, Frohman E et al (1997) Neuronal (type I) nitric oxide synthase regulates nuclear factor kappaB activity and immunologic (type II) nitric oxide synthase expression. Proc Natl Acad Sci 94:2676–2680CrossRefGoogle Scholar
  35. Toreti VC, Sato HS, Pastore GM et al (2013) Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid Based Complement Altern Med 2013:1–13CrossRefGoogle Scholar
  36. Touil-Boukoffa C, Bauvois B, Sanceau J et al (1998) Production of nitric oxide (NO) in human hydatidosis. Relationship between nitrite production and interferon gamma levels. Biochimie 80:739–744CrossRefGoogle Scholar
  37. Tϋrsen U (2012) Pathophysiology of the Behçet’s disease. Pathol Res Int 2012:1–11Google Scholar
  38. Wang K, Hu L, Jin XL et al (2013) Molecular mechanisms underlying the in vitro anti-inflammatory effects of flavonoid rich ethanol extract from Chinese Propolis. Evid Based Complement Altern Med. 2013:1–11Google Scholar
  39. Wang K, Hu L, Jin XL et al (2015) Polyphenol-rich propolis extracts from China and Brazil exert anti-inflammatory effects by modulating ubiquitination of TRAF6 during the activation of NF-κB. J Func Foods 19:464–478CrossRefGoogle Scholar
  40. Wink DA, Hanbauer I, Grisham MB et al (1996) Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul 34:159–187CrossRefGoogle Scholar
  41. Wu GS, Zhang J, Rao NA (1997) Peroxynitrite and oxidative damage in experimental autoimmune uveitis. Investig Ophthalmol Vis Sci 38:1333–1339Google Scholar
  42. Xie QW, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269:4705–4708PubMedGoogle Scholar
  43. Yamamoto JH, Minami M, Inaba G et al (1993) Cellular autoimmunity to retinal specific antigens in patients with Behçet’s disease. Br J Ophthalmol 77:584–589CrossRefGoogle Scholar
  44. Yang CH, Fang IM, Lin CP et al (2005) Effects of the NF-kB inhibitor pyrrolidine dithiocarbamate on experimentally induced autoimmune anterior uveitis. Investig Ophthalmol Vis Sci 46:1339–1347CrossRefGoogle Scholar
  45. Yehuda SB, Luger D, Ochaion A et al (2011) Inhibition of experimental auto-immune uveitis by the A3 adenosine receptor agonist CF101. Int J Mol Med 753:1–5Google Scholar
  46. Yildirim O (2012) Animal models in Behçet’s disease. Pathol Res Int 2012:1–8CrossRefGoogle Scholar
  47. Zeghidia H, Saadoun D, Bodaghia B (2014) Ocular manifestations in Behçet’s disease. Rev Med Int 35:97–102CrossRefGoogle Scholar
  48. Zhang J, Wu LY, Wu GS et al (1999) Differential expression of nitric oxide synthase in experimental uveoretinitis. Invest Ophthalmol Vis Sci 40:1899–1905PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kahina Touri
    • 1
  • Houda Belguendouz
    • 1
  • Oussama Medjeber
    • 1
  • Zineb Djeraba
    • 1
  • Karima Lahmar
    • 1
  • Chafia Touil-Boukoffa
    • 1
    Email author
  1. 1.Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological SciencesUniversity of Sciences and Technology Houari Boumediene (USTHB)AlgiersAlgeria

Personalised recommendations