Advertisement

The citrus flavanone naringenin attenuates zymosan-induced mouse joint inflammation: induction of Nrf2 expression in recruited CD45+ hematopoietic cells

  • Allan J. C. Bussmann
  • Sergio M. Borghi
  • Tiago H. Zaninelli
  • Telma S. dos Santos
  • Carla F. S. Guazelli
  • Victor Fattori
  • Talita P. Domiciano
  • Felipe A. Pinho-Ribeiro
  • Kenji W. Ruiz-Miyazawa
  • Antonio M. B. Casella
  • Josiane A. Vignoli
  • Doumit Camilios-Neto
  • Rubia Casagrande
  • Waldiceu A. VerriJr.Email author
Original Article

Abstract

Background

Naringenin is a biologically active analgesic, anti-inflammatory, and antioxidant flavonoid. Naringenin targets in inflammation-induced articular pain remain poorly explored.

Methods

The present study investigated the cellular and molecular mechanisms involved in the analgesic/anti-inflammatory effects of naringenin in zymosan-induced arthritis. Mice were pre-treated orally with naringenin (16.7–150 mg/kg), followed by intra-articular injection of zymosan. Articular mechanical hyperalgesia and oedema, leucocyte recruitment to synovial cavity, histopathology, expression/production of pro- and anti-inflammatory mediators and NFκB activation, inflammasome component expression, and oxidative stress were evaluated.

Results

Naringenin inhibited articular pain and oedema in a dose-dependent manner. The dose of 50 mg/kg inhibited leucocyte recruitment, histopathological alterations, NFκB activation, and NFκB-dependent pro-inflammatory cytokines (TNF-α, IL-1β, and IL-33), and preproET-1 mRNA expression, but increased anti-inflammatory IL-10. Naringenin also inhibited inflammasome upregulation (reduced Nlrp3, ASC, caspase-1, and pro-IL-1β mRNA expression) and oxidative stress (reduced gp91phox mRNA expression and superoxide anion production, increased GSH levels, induced Nrf2 protein in CD45+ hematopoietic recruited cells, and induced Nrf2 and HO-1 mRNA expression).

Conclusions

Naringenin presents analgesic and anti-inflammatory effects in zymosan-induced arthritis by targeting its main physiopathological mechanisms. These data highlight this flavonoid as an interesting therapeutic compound to treat joint inflammation, deserving additional pre-clinical and clinical studies.

Keywords

Naringenin Arthritis Zymosan Pain Inflammation NFκB Nrf2 

Notes

Authors contributions

RC and WAV Jr designed the study. AJCB, SMB, THZ, TSS, CFSG, VF, TPD, FAP-R, and KWR-M conducted the experiments. AMBC, JAV, DC-N, RC, and WAV Jr contributed with reagents, analytical tools, interpretation of data, and intellectual support for the study. AJCB, SMB, THZ, TSS, CFSG, VF, TPD, FAP-R, and KWR-M performed data analysis. SMB, RC, and WAV Jr wrote the paper. All authors read and approved the final version of the manuscript.

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ministério da Ciência Tecnologia e Inovação (MCTI), Secretaria da Ciência, Tecnologia e Ensino Superior (SETI), Fundação Araucária, and Paraná State Government, Brazil. Sergio M. Borghi received a postdoctoral fellowship from CAPES and CNPq (152792/2016-3). The authors also thank the support of Central Multiusuário de Laboratórios de Pesquisa da Universidade Estadual de Londrina (CMLP-UEL).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. Aletaha D, Smolen JS (2018) Diagnosis and management of rheumatoid arthritis: a review. JAMA 320:1360–1372.  https://doi.org/10.1001/jama.2018.13103 CrossRefGoogle Scholar
  2. Ali R, Shahid A, Ali N, Hasan SK, Majed F, Sultana S (2016) Amelioration of benzo[a]pyrene-induced oxidative stress and pulmonary toxicity by Naringenin in Wistar rats: a plausible role of COX-2 and NF-kappaB. Hum Exp Toxicol.  https://doi.org/10.1177/0960327116650009 Google Scholar
  3. Al-Rejaie SS, Aleisa AM, Abuohashish HM, Parmar MY, Ola MS, Al-Hosaini AA, Ahmed MM (2015) Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol Res 37:924–933.  https://doi.org/10.1179/1743132815Y.0000000079 CrossRefGoogle Scholar
  4. Ananth DA, Rameshkumar A, Jeyadevi R, Aseervatham GS, Sripriya J, Bose PC, Sivasudha T (2016) Amelioratory effect of flavonoids rich Pergularia daemia extract against CFA induced arthritic rats. Biomed Pharmacothery = Biomedecine and pharmacotherapie 80:244–252.  https://doi.org/10.1016/j.biopha.2016.03.019 CrossRefGoogle Scholar
  5. Aruoma OI (2003) Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat Res 523–524:9–20CrossRefGoogle Scholar
  6. Asquith DL, Miller AM, McInnes IB, Liew FY (2009) Animal models of rheumatoid arthritis. Eur J Immunol 39:2040–2044.  https://doi.org/10.1002/eji.200939578 CrossRefGoogle Scholar
  7. Bai X et al (2014) Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-kappaB, MMP-9 and up-regulated claudin-5 expression. Neurochem Res 39:1405–1415.  https://doi.org/10.1007/s11064-014-1326-y CrossRefGoogle Scholar
  8. Bernardy CCF et al (2017) Tempol, a superoxide dismutase mimetic agent, inhibits superoxide anion-induced inflammatory pain in mice. BioMed Res Int 2017:9584819.  https://doi.org/10.1155/2017/9584819 CrossRefGoogle Scholar
  9. Bouayed J, Bohn T (2010) Exogenous antioxidants—double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3:228–237.  https://doi.org/10.4161/oxim.3.4.12858 CrossRefGoogle Scholar
  10. Chtourou Y, Fetoui H, Jemai R, Ben Slima A, Makni M, Gdoura R (2015) Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor kappaB pathway. Eur J Pharmacol 746:96–105.  https://doi.org/10.1016/j.ejphar.2014.10.027 CrossRefGoogle Scholar
  11. Conte Fde P, Barja-Fidalgo C, Verri WA Jr, Cunha FQ, Rae GA, Penido C, Henriques M (2008) Endothelins modulate inflammatory reaction in zymosan-induced arthritis: participation of LTB4, TNF-alpha, and CXCL-1. J Leukoc Biol 84:652–660.  https://doi.org/10.1189/jlb.1207827 CrossRefGoogle Scholar
  12. Conte FP, Menezes-de-Lima O Jr, Verri WA Jr, Cunha FQ, Penido C, Henriques MG (2010) Lipoxin A(4) attenuates zymosan-induced arthritis by modulating endothelin-1 and its effects. Br J Pharmacol 161:911–924.  https://doi.org/10.1111/j.1476-5381.2010.00950.x CrossRefGoogle Scholar
  13. Craig W, Poppema S, Little MT, Dragowska W, Lansdorp PM (1994) CD45 isoform expression on human haemopoietic cells at different stages of development. Br J Haematol 88:24–30CrossRefGoogle Scholar
  14. Cross M et al (2014) The global burden of rheumatoid arthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73:1316–1322.  https://doi.org/10.1136/annrheumdis-2013-204627 CrossRefGoogle Scholar
  15. Decker EA (1997) Phenolics: prooxidants or antioxidants? Nutr Rev 55:396–398CrossRefGoogle Scholar
  16. Donate PB et al (2012) Bosentan, an endothelin receptor antagonist, ameliorates collagen-induced arthritis: the role of TNF-alpha in the induction of endothelin system genes. Inflamm Res 61:337–348.  https://doi.org/10.1007/s00011-011-0415-5 CrossRefGoogle Scholar
  17. Du Z, Kelly E, Mecklenbrauker I, Agle L, Herrero C, Paik P, Ivashkiv LB (2006) Selective regulation of IL-10 signaling and function by zymosan. J Immunol 176:4785–4792CrossRefGoogle Scholar
  18. Esmaeili MA, Alilou M (2014) Naringenin attenuates CCl4-induced hepatic inflammation by the activation of an Nrf2-mediated pathway in rats. Clin Exp Pharmacol Physiol 41:416–422.  https://doi.org/10.1111/1440-1681.12230 CrossRefGoogle Scholar
  19. Fattori V et al (2016) Differential regulation of oxidative stress and cytokine production by endothelin ETA and ETB receptors in superoxide anion-induced inflammation and pain in mice. J Drug Target 15:1–27.  https://doi.org/10.1080/1061186x.2016.1245308 CrossRefGoogle Scholar
  20. Frabasile S, Koishi AC, Kuczera D, Silveira GF, Verri WA Jr, Duarte Dos Santos CN, Bordignon J (2017) The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci Rep 7:41864.  https://doi.org/10.1038/srep41864 CrossRefGoogle Scholar
  21. Guerrero AT et al (2006) Hypernociception elicited by tibio-tarsal joint flexion in mice: a novel experimental arthritis model for pharmacological screening. Pharmacol Biochem Behav 84:244–251.  https://doi.org/10.1016/j.pbb.2006.05.008 CrossRefGoogle Scholar
  22. Guerrero AT, Cunha TM, Verri WA Jr, Gazzinelli RT, Teixeira MM, Cunha FQ, Ferreira SH (2012) Toll-like receptor 2/MyD88 signaling mediates zymosan-induced joint hypernociception in mice: participation of TNF-alpha, IL-1beta and CXCL1/KC. Eur J Pharmacol 674:51–57.  https://doi.org/10.1016/j.ejphar.2011.10.023 CrossRefGoogle Scholar
  23. Hu CY, Zhao YT (2014) Analgesic effects of naringenin in rats with spinal nerve ligation-induced neuropathic pain. Biomed Rep 2:569–573.  https://doi.org/10.3892/br.2014.267 CrossRefGoogle Scholar
  24. Jin L, Zeng W, Zhang F, Zhang C, Liang W (2017) Naringenin ameliorates acute inflammation by regulating intracellular cytokine degradation. J Immunol 199:3466–3477.  https://doi.org/10.4049/jimmunol.1602016 CrossRefGoogle Scholar
  25. Kaulaskar S, Bhutada P, Rahigude A, Jain D, Harle U (2012) Effects of naringenin on allodynia and hyperalgesia in rats with chronic constriction injury-induced neuropathic pain. Zhong Xi Yi Jie He Xue Bao 10:1482–1489.  https://doi.org/10.3736/jcim20121223 CrossRefGoogle Scholar
  26. Kesselheim AS, Avorn J, Sarpatwari A (2016) The high cost of prescription drugs in the United States: origins and prospects for reform. JAMA 316:858–871.  https://doi.org/10.1001/jama.2016.11237 CrossRefGoogle Scholar
  27. Kongpichitchoke T, Hsu JL, Huang TC (2015) Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCdelta C1B domain: vitro and in silico studies. J Agric Food Chem 63:4580–4586.  https://doi.org/10.1021/acs.jafc.5b00312 CrossRefGoogle Scholar
  28. Krogholm KS, Bredsdorff L, Knuthsen P, Haraldsdottir J, Rasmussen SE (2010) Relative bioavailability of the flavonoids quercetin, hesperetin and naringenin given simultaneously through diet. Eur J Clin Nutr 64:432–435.  https://doi.org/10.1038/ejcn.2010.6 CrossRefGoogle Scholar
  29. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750.  https://doi.org/10.1155/2013/162750 Google Scholar
  30. Laev SS, Salakhutdinov NF (2015) Anti-arthritic agents: progress and potential. Bioorganic Med Chem 23:3059–3080.  https://doi.org/10.1016/j.bmc.2015.05.010 CrossRefGoogle Scholar
  31. Lamkanfi M, Malireddi RK, Kanneganti TD (2009) Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem 284:20574–20581.  https://doi.org/10.1074/jbc.M109.023689 CrossRefGoogle Scholar
  32. Li YR, Chen DY, Chu CL, Li S, Chen YK, Wu CL, Lin CC (2015) Naringenin inhibits dendritic cell maturation and has therapeutic effects in a murine model of collagen-induced arthritis. J Nutr Biochem 26:1467–1478.  https://doi.org/10.1016/j.jnutbio.2015.07.016 CrossRefGoogle Scholar
  33. Lim W, Park S, Bazer FW, Song G (2017) Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem 118:1118–1131.  https://doi.org/10.1002/jcb.25729 CrossRefGoogle Scholar
  34. Liu K et al (2016) Chemical evidence for potent xanthine oxidase inhibitory activity of ethyl acetate extract of citrus aurantium L. Dried Immature Fruits Mol 21:302.  https://doi.org/10.3390/molecules21030302 Google Scholar
  35. Manach C, Morand C, Gil-Izquierdo A, Bouteloup-Demange C, Remesy C (2003) Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur J Clin Nutr 57:235–242.  https://doi.org/10.1038/sj.ejcn.1601547 CrossRefGoogle Scholar
  36. Manchope MF et al (2016) Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO-cGMP-PKG-KATP channel signaling pathway. PLoS One 11:e0153015.  https://doi.org/10.1371/journal.pone.0153015 CrossRefGoogle Scholar
  37. Manchope MF, Casagrande R, Verri WA Jr (2017) Naringenin an analgesic and anti-inflammatory citrus flavanone. Oncotarget 8:3766–3767.  https://doi.org/10.18632/oncotarget.14084 CrossRefGoogle Scholar
  38. Martinez RM et al (2015) Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. J Nat Prod 78:1647–1655.  https://doi.org/10.1021/acs.jnatprod.5b00198 CrossRefGoogle Scholar
  39. Nahmias Y, Goldwasser J, Casali M, van Poll D, Wakita T, Chung RT, Yarmush ML (2008) Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 47:1437–1445.  https://doi.org/10.1002/hep.22197 CrossRefGoogle Scholar
  40. Naito Y, Takagi T, Higashimura Y (2014) Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch Biochem Biophys 564:83–88.  https://doi.org/10.1016/j.abb.2014.09.005 CrossRefGoogle Scholar
  41. Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034.  https://doi.org/10.1101/cshperspect.a000034 CrossRefGoogle Scholar
  42. Park HJ, Choi YJ, Lee JH, Nam MJ (2017) Naringenin causes ASK1-induced apoptosis via reactive oxygen species in human pancreatic cancer cells. Food Chem Toxicol 99:1–8.  https://doi.org/10.1016/j.fct.2016.11.008 CrossRefGoogle Scholar
  43. Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, Verri WA Jr (2016a) Naringenin reduces inflammatory pain in mice. Neuropharmacology 105:508–519.  https://doi.org/10.1016/j.neuropharm.2016.02.019 CrossRefGoogle Scholar
  44. Pinho-Ribeiro FA et al (2016b) The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-kappaB activation. J Nutr Biochem 33:8–14.  https://doi.org/10.1016/j.jnutbio.2016.03.013 CrossRefGoogle Scholar
  45. Ramprasath T, Senthamizharasi M, Vasudevan V, Sasikumar S, Yuvaraj S, Selvam GS (2014) Naringenin confers protection against oxidative stress through upregulation of Nrf2 target genes in cardiomyoblast cells. J Physiol Biochem 70:407–415.  https://doi.org/10.1007/s13105-014-0318-3 CrossRefGoogle Scholar
  46. Raza H, John A (2005) Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments. Toxicol Appl Pharmacol 207:212–220.  https://doi.org/10.1016/j.taap.2005.01.004 CrossRefGoogle Scholar
  47. Ruiz-Miyazawa KW et al (2018) The citrus flavanone naringenin reduces gout-induced joint pain and inflammation in mice by inhibiting the activation of NFκB and macrophage release of IL-1β. J Funct Foods 48:106–116.  https://doi.org/10.1016/j.jff.2018.06.025 CrossRefGoogle Scholar
  48. Sahu SC, Gray GC (1997) Lipid peroxidation and DNA damage induced by morin and naringenin in isolated rat liver nuclei. Food Chem Toxicol 35:443–447CrossRefGoogle Scholar
  49. Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966.  https://doi.org/10.1016/j.freeradbiomed.2011.01.026 CrossRefGoogle Scholar
  50. Schaible HG (2014) Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther 16:470CrossRefGoogle Scholar
  51. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832.  https://doi.org/10.1016/j.cell.2010.01.040 CrossRefGoogle Scholar
  52. Shulman M et al (2011) Enhancement of naringenin bioavailability by complexation with hydroxypropyl-beta-cyclodextrin [corrected]. PLoS One 6:e18033.  https://doi.org/10.1371/journal.pone.0018033 CrossRefGoogle Scholar
  53. Souza GR et al (2015) Involvement of nuclear factor kappa B in the maintenance of persistent inflammatory hypernociception. Pharmacol Biochem Behav 134:49–56.  https://doi.org/10.1016/j.pbb.2015.04.005 CrossRefGoogle Scholar
  54. Sun H et al (2013) Pharmacokinetics of hesperetin and naringenin in the Zhi Zhu Wan, a traditional Chinese medicinal formulae, and its pharmacodynamics study. Phytother Res: PTR 27:1345–1351.  https://doi.org/10.1002/ptr.4867 CrossRefGoogle Scholar
  55. Teixeira JM, Bobinski F, Parada CA, Sluka KA, Tambeli CH (2016) P2X3 and P2X2/3 receptors play a crucial role in articular hyperalgesia development through inflammatory mechanisms in the knee joint experimental synovitis. Mol Neurobiol 15:45.  https://doi.org/10.1007/s12035-016-0146-2 Google Scholar
  56. Vafeiadou K, Vauzour D, Lee HY, Rodriguez-Mateos A, Williams RJ, Spencer JP (2009) The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch Biochem Biophys 484:100–109.  https://doi.org/10.1016/j.abb.2009.01.016 CrossRefGoogle Scholar
  57. Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112:116–138.  https://doi.org/10.1016/j.pharmthera.2006.04.001 CrossRefGoogle Scholar
  58. Verri WA Jr et al (2008) IL-33 mediates antigen-induced cutaneous and articular hypernociception in mice. Proc Natl Acad Sci USA 105:2723–2728.  https://doi.org/10.1073/pnas.0712116105 CrossRefGoogle Scholar
  59. Verri WA Jr et al (2010) IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann Rheum Dis 69:1697–1703.  https://doi.org/10.1136/ard.2009.122655 CrossRefGoogle Scholar
  60. Wang W et al (2014) The inhibition of RANKL-induced osteoclastogenesis through the suppression of p38 signaling pathway by naringenin and attenuation of titanium-particle-induced osteolysis. Int J Mol Sci 15:21913–21934.  https://doi.org/10.3390/ijms151221913 CrossRefGoogle Scholar
  61. Watjen W et al (2005) Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. J Nutr 135:525–531.  https://doi.org/10.1093/jn/135.3.525 CrossRefGoogle Scholar
  62. Yen HR, Liu CJ, Yeh CC (2015) Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem Biol Interact 235:1–9.  https://doi.org/10.1016/j.cbi.2015.04.003 CrossRefGoogle Scholar
  63. Zarpelon AC et al (2016) Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J 30:54–65.  https://doi.org/10.1096/fj.14-267146 CrossRefGoogle Scholar
  64. Zhao Y et al (2016) 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer 68:38–50.  https://doi.org/10.1016/j.ejca.2016.09.001 CrossRefGoogle Scholar
  65. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140.  https://doi.org/10.1038/ni.1831 CrossRefGoogle Scholar
  66. Zhu L, Wang J, Wei T, Gao J, He H, Chang X, Yan T (2015) Effects of Naringenin on inflammation in complete freund’s adjuvant-induced arthritis by regulating Bax/Bcl-2 balance. Inflammation 38:245–251.  https://doi.org/10.1007/s10753-014-0027-7 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Allan J. C. Bussmann
    • 1
  • Sergio M. Borghi
    • 1
  • Tiago H. Zaninelli
    • 1
  • Telma S. dos Santos
    • 1
  • Carla F. S. Guazelli
    • 1
  • Victor Fattori
    • 1
  • Talita P. Domiciano
    • 1
  • Felipe A. Pinho-Ribeiro
    • 1
  • Kenji W. Ruiz-Miyazawa
    • 1
  • Antonio M. B. Casella
    • 2
  • Josiane A. Vignoli
    • 3
  • Doumit Camilios-Neto
    • 3
  • Rubia Casagrande
    • 4
  • Waldiceu A. VerriJr.
    • 1
    Email author
  1. 1.Department of PathologyBiological Science Center, Londrina State UniversityLondrinaBrazil
  2. 2.Department of Clinical Medicine, Health Science CenterLondrina State University, University HospitalLondrinaBrazil
  3. 3.Department of Biochemistry and Biotechnology, Exact Sciences CenterLondrina State UniversityLondrinaBrazil
  4. 4.Department of Pharmaceutical Sciences, Health Science CenterLondrina State University, University HospitalLondrinaBrazil

Personalised recommendations