Advertisement

Inflammopharmacology

, Volume 27, Issue 1, pp 175–187 | Cite as

Proteoglycans isolated from the bramble shark cartilage show potential anti-osteoarthritic properties

  • Kizhakkeppurath Kumaran Ajeeshkumar
  • Kalladath Venugopal Vishnu
  • Raju Navaneethan
  • Kumar Raj
  • Kuttipurath Raghavan Remyakumari
  • Thangaraj Raja Swaminathan
  • Mathew Suseela
  • Kurukkan Kunnath AshaEmail author
  • Gopinathan Pillai SreekanthEmail author
Original Article
  • 135 Downloads

Abstract

Osteoarthritis (OA) causes articular cartilage destruction, initiating pain and inflammation in the joints, resulting in joint disability. Medications are available to manage these symptoms; however, their effects on the disease progression are limited. Loss of proteoglycans (PGs) was reported to contribute articular cartilage destruction in OA. Therapeutics approaches were previously studied in the animal models of OA. In the present study, we investigated the oral efficacy of four dosages of PGs (25 mg/kg, 50 mg/kg, 100 mg/kg and 200 mg/kg), isolated from the bramble shark cartilage, in an animal model of OA. Indomethacin was used as a bioequivalent formulation. Primarily, the mass spectrum analysis of the purified PGs obtained from bramble shark cartilage revealed the presence of two unique peptides including AGWLSDGSVR and LDGNPINLSK, that showed sequence similarity with aggrecan core-protein and epiphycan, respectively. The levels of C-reactive protein and uric acid in the OA rats were reduced when treated with PGs. Histopathology analysis displayed less cartilage erosion and neovascularization in OA rats treated with PGs. The X-ray imaging presented higher bone density with 200 mg/kg dosage of PG treatment in OA rats. The expressions of the inflammatory modulators including TNF-α, IL-1β, MMP13, NOS2, IL-10 and COX-2 were found to be moderated with PG treatment. In addition, PG treatment maintained the activities of antioxidant enzymes, including SOD and catalase in the joint tissues with a higher GSH content, in a dose-dependent manner. Taken together, our preliminary findings report the anti-osteoarthritic properties of PGs and recommend to evaluate its efficacy and safety in randomized trials.

Keywords

Osteoarthritis Proteoglycans Inflammation Oxidative stress 

Notes

Acknowledgements

This study was supported by Ministry of Earth Sciences-Centre for Marine Living Resources and Ecology (MoES-CMLRE), Government of India (Grant no. MOES/10/MLR/01/2012) to MS and Mahidol University Post-Doctoral Fellowship Grant (Grant no. R016120002) to GPS.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Human and animal rights statement

Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), New Delhi, India and the Institutional Animal Ethics Committee (IAEC), ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Cochin, India (CIFT/B&N/IAEC/04/2013).

References

  1. Abhishek A, Doherty M (2013) Diagnosis and clinical presentation of osteoarthritis. Rheum Dis Clin N Am 39:45–66.  https://doi.org/10.1016/j.rdc.2012.10.007 CrossRefGoogle Scholar
  2. Abramson SB (2008) Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Res Ther 10(Suppl 2):S2.  https://doi.org/10.1186/ar2463 CrossRefGoogle Scholar
  3. Adams ME (1994) Changes in aggrecan populations in experimental osteoarthritis. Osteoarthr Cartil 2:155–164CrossRefGoogle Scholar
  4. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  5. Asano K, Takahashi E, Yoshimura S, Nakane A (2018) Oral administration of salmon cartilage proteoglycan extends the survival of allografts in mice. Biomed Rep 8:37–40.  https://doi.org/10.3892/br.2017.1011 Google Scholar
  6. Behrendt P et al (2016) IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage osteoarthritis and cartilage/OARS. Osteoarthr Res Soc 24:1981–1988.  https://doi.org/10.1016/j.joca.2016.06.016 CrossRefGoogle Scholar
  7. Boehme KA, Rolauffs B (2018) Onset and progression of human osteoarthritis-can growth factors, inflammatory cytokines, or differential miRNA expression concomitantly induce proliferation, ECM degradation, and inflammation in articular cartilage? Int J Mol Sci 19:2282.  https://doi.org/10.3390/ijms19082282 CrossRefGoogle Scholar
  8. Carames B, Lopez-Armada MJ, Cillero-Pastor B, Lires-Dean M, Vaamonde C, Galdo F, Blanco FJ (2008) Differential effects of tumor necrosis factor-alpha and interleukin-1beta on cell death in human articular chondrocytes osteoarthritis and cartilage/OARS. Osteoarthr Res Soc 16:715–722.  https://doi.org/10.1016/j.joca.2007.10.006 CrossRefGoogle Scholar
  9. Chevalier X, Eymard F, Richette P (2013) Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol 9:400–410.  https://doi.org/10.1038/nrrheum.2013.44 CrossRefGoogle Scholar
  10. Choi HS, Im S, Park JW, Suh HJ (2016) Protective effect of deer bone oil on cartilage destruction in rats with monosodium iodoacetate (MIA)-induced osteoarthritis. Biol Pharm Bull 39:2042–2051.  https://doi.org/10.1248/bpb.b16-00565 CrossRefGoogle Scholar
  11. Chu CR, Williams AA, Coyle CH, Bowers ME (2012) Early diagnosis to enable early treatment of pre-osteoarthritis. Arthritis Res Ther 14:212.  https://doi.org/10.1186/ar3845 CrossRefGoogle Scholar
  12. Chun JM, Kim HS, Lee AY, Kim SH, Kim HK (2016) Anti-inflammatory and antiosteoarthritis effects of Saposhnikovia divaricata ethanol extract: in vitro and in vivo studies. Evi Based Complement Altern Med eCAM 2016:1984238.  https://doi.org/10.1155/2016/1984238 Google Scholar
  13. Cifuentes DJ, Rocha LG, Silva LA, Brito AC, Rueff-Barroso CR, Porto LC, Pinho RA (2010) Decrease in oxidative stress and histological changes induced by physical exercise calibrated in rats with osteoarthritis induced by monosodium iodoacetate osteoarthritis and cartilage/OARS. Osteoarthr Res Soc 18:1088–1095.  https://doi.org/10.1016/j.joca.2010.04.004 CrossRefGoogle Scholar
  14. de Boer TN et al (2009) The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: ex vivo evaluation of human cartilage tissue after in vivo treatment Osteoarthritis and cartilage/OARS. Osteoarthr Res Soc 17:482–488.  https://doi.org/10.1016/j.joca.2008.09.002 CrossRefGoogle Scholar
  15. Denoble AE et al (2011) Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci USA 108:2088–2093.  https://doi.org/10.1073/pnas.1012743108 CrossRefGoogle Scholar
  16. Deveza LA et al (2017) Association between biochemical markers of bone turnover and bone changes on imaging: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken) 69:1179–1191.  https://doi.org/10.1002/acr.23121 CrossRefGoogle Scholar
  17. Duclos M (2016) Osteoarthritis, obesity and type 2 diabetes: the weight of waist circumference. Ann Phys Rehabil Med 59:157–160.  https://doi.org/10.1016/j.rehab.2016.04.002 CrossRefGoogle Scholar
  18. Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Investig 108:169–173.  https://doi.org/10.1172/JCI13530 CrossRefGoogle Scholar
  19. Felson DT (2006) Clinical practice. Osteoarthritis of the knee. N Engl J Med 354:841–848.  https://doi.org/10.1056/NEJMcp051726 CrossRefGoogle Scholar
  20. Fernandes J et al (1999) In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints: prevention of osteoarthritis progression. Am J Pathol 154:1159–1169.  https://doi.org/10.1016/s0002-9440(10)65368-0 CrossRefGoogle Scholar
  21. Fiorito S, Magrini L, Adrey J, Mailhe D, Brouty-Boye D (2005) Inflammatory status and cartilage regenerative potential of synovial fibroblasts from patients with osteoarthritis and chondropathy. Rheumatology (Oxford) 44:164–171.  https://doi.org/10.1093/rheumatology/keh431 CrossRefGoogle Scholar
  22. Gao ZQ, Guo X, Duan C, Ma W, Xu P, Wang W, Chen JC (2012) Altered aggrecan synthesis and collagen expression profiles in chondrocytes from patients with Kashin-Beck disease and osteoarthritis. J Int Med Res 40:1325–1334.  https://doi.org/10.1177/147323001204000411 CrossRefGoogle Scholar
  23. Gesteira TF et al (2011) A novel approach for the characterisation of proteoglycans and biosynthetic enzymes in a snail model. Biochim Biophys Acta (BBA) Proteins Proteom 1814:1862–1869.  https://doi.org/10.1016/j.bbapap.2011.07.024 CrossRefGoogle Scholar
  24. Geusens P, Lems W (2008) Efficacy and tolerability of lumiracoxib, a highly selective cyclo-oxygenase-2 (COX2) inhibitor, in the management of pain and osteoarthritis. Ther Clin Risk Manag 4:337–344CrossRefGoogle Scholar
  25. Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23:471–478.  https://doi.org/10.1097/BOR.0b013e328349c2b1 CrossRefGoogle Scholar
  26. Helmark IC et al (2010) Exercise increases interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis: a randomized controlled trial. Arthritis Res Ther 12:R126.  https://doi.org/10.1186/ar3064 CrossRefGoogle Scholar
  27. Henrotin Y et al (2013) Early decrease of serum biomarkers of type II collagen degradation (Coll2-1) and joint inflammation (Coll2-1 NO(2)) by hyaluronic acid intra-articular injections in patients with knee osteoarthritis: a research study part of the Biovisco study. J Orthop Res 31:901–907.  https://doi.org/10.1002/jor.22297 CrossRefGoogle Scholar
  28. Hoshi H et al (2017) Effect of inhibiting MMP13 and ADAMTS5 by intra-articular injection of small interfering RNA in a surgically induced osteoarthritis model of mice. Cell Tissue Res 368:379–387.  https://doi.org/10.1007/s00441-016-2563-y CrossRefGoogle Scholar
  29. Hu G et al (2017) MicroRNA-145 attenuates TNF-alpha-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4. Cell Death Dis 8:e3140.  https://doi.org/10.1038/cddis.2017.522 CrossRefGoogle Scholar
  30. Hulejova H, Baresova V, Klezl Z, Polanska M, Adam M, Senolt L (2007) Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone. Cytokine 38:151–156.  https://doi.org/10.1016/j.cyto.2007.06.001 CrossRefGoogle Scholar
  31. Inerot S, Heinegard D, Audell L, Olsson SE (1978) Articular-cartilage proteoglycans in aging and osteoarthritis. Biochem J 169:143–156CrossRefGoogle Scholar
  32. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652.  https://doi.org/10.1146/annurev.biochem.67.1.609 CrossRefGoogle Scholar
  33. Jeong JH, Moon SJ, Jhun JY, Yang EJ, Cho ML, Min JK (2015) Eupatilin exerts antinociceptive and chondroprotective properties in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. PLoS One 10:e0130882.  https://doi.org/10.1371/journal.pone.0130882 CrossRefGoogle Scholar
  34. Jin X, Beguerie JR, Zhang W, Blizzard L, Otahal P, Jones G, Ding C (2015) Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis 74:703–710.  https://doi.org/10.1136/annrheumdis-2013-204494 CrossRefGoogle Scholar
  35. Jung YK, Kim GW, Park HR, Lee EJ, Choi JY, Beier F, Han SW (2013) Role of interleukin-10 in endochondral bone formation in mice: anabolic effect via the bone morphogenetic protein/Smad pathway. Arthritis Rheum 65:3153–3164.  https://doi.org/10.1002/art.38181 CrossRefGoogle Scholar
  36. Kawarai Y et al (2018) Changes in proinflammatory cytokines, neuropeptides, and microglia in an animal model of monosodium iodoacetate-induced hip osteoarthritis. J Orthop Res.  https://doi.org/10.1002/jor.24065 Google Scholar
  37. Kulkarni K, Karssiens T, Kumar V, Pandit H (2016) Obesity and osteoarthritis. Maturitas 89:22–28.  https://doi.org/10.1016/j.maturitas.2016.04.006 CrossRefGoogle Scholar
  38. Lacraz S, Nicod LP, Chicheportiche R, Welgus HG, Dayer JM (1995) IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Investig 96:2304–2310.  https://doi.org/10.1172/jci118286 CrossRefGoogle Scholar
  39. Lane NE (1997) Pain management in osteoarthritis: the role of COX-2 inhibitors. J Rheumatol Suppl 49:20–24Google Scholar
  40. Lepetsos P, Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta 1862:576–591.  https://doi.org/10.1016/j.bbadis.2016.01.003 CrossRefGoogle Scholar
  41. Li H et al (2017) Associations of dietary and serum magnesium with serum high-sensitivity C-reactive protein in early radiographic knee osteoarthritis patients. Mod Rheumatol Jpn Rheum Assoc 27:669–674.  https://doi.org/10.1080/14397595.2016.1230296 CrossRefGoogle Scholar
  42. Lopez-Armada MJ, Carames B, Lires-Dean M, Cillero-Pastor B, Ruiz-Romero C, Galdo F, Blanco FJ (2006) Cytokines, tumor necrosis factor-alpha and interleukin-1beta, differentially regulate apoptosis in osteoarthritis cultured human chondrocytes osteoarthritis and cartilage/OARS. Osteoarthr Res Soc 14:660–669.  https://doi.org/10.1016/j.joca.2006.01.005 CrossRefGoogle Scholar
  43. Ma CA, Leung YY (2017) Exploring the link between uric acid and osteoarthritis. Front Med (Lausanne) 4:225.  https://doi.org/10.3389/fmed.2017.00225 CrossRefGoogle Scholar
  44. Mabey T, Honsawek S (2015) Cytokines as biochemical markers for knee osteoarthritis. World J Orthop 6:95–105.  https://doi.org/10.5312/wjo.v6.i1.95 CrossRefGoogle Scholar
  45. Malemud CJ (1991) Changes in proteoglycans in osteoarthritis: biochemistry, ultrastructure and biosynthetic processing. J Rheumatol Suppl 27:60–62Google Scholar
  46. Mao Y, Xu W, Xie Z, Dong Q (2016) Association of Irisin and CRP levels with the radiographic severity of knee osteoarthritis. Genet Test Mol Biomark 20:86–89.  https://doi.org/10.1089/gtmb.2015.0170 CrossRefGoogle Scholar
  47. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474CrossRefGoogle Scholar
  48. Martel-Pelletier J et al (2016) Osteoarthritis. Nat Rev Dis Primers 2:16072.  https://doi.org/10.1038/nrdp.2016.72 CrossRefGoogle Scholar
  49. Meurice J (1983) Treatment of osteoarthritis: a 3-month comparison between tiaprofenic acid and indomethacin. Curr Med Res Opin 8:295–301.  https://doi.org/10.1185/03007998309112387 CrossRefGoogle Scholar
  50. Min S et al (2017) Serum levels of the bone turnover markers dickkopf-1, osteoprotegerin, and TNF-alpha in knee osteoarthritis patients. Clin Rheumatol 36:2351–2358.  https://doi.org/10.1007/s10067-017-3690-x CrossRefGoogle Scholar
  51. Mobasheri A (2012) Osteoarthritis year 2012 in review: biomarkers. Osteoarthr Cartil 20:1451–1464.  https://doi.org/10.1016/j.joca.2012.07.009 CrossRefGoogle Scholar
  52. More AS et al (2013) Effect of iNOS inhibitor S-methylisothiourea in monosodium iodoacetate-induced osteoathritic pain: implication for osteoarthritis therapy. Pharmacol Biochem Behav 103:764–772.  https://doi.org/10.1016/j.pbb.2012.12.013 CrossRefGoogle Scholar
  53. Müller C, Khabut A, Dudhia J, Reinholt FP, Aspberg A, Heinegård D, Önnerfjord P (2014) Quantitative proteomics at different depths in human articular cartilage reveals unique patterns of protein distribution. Matrix Biol 40:34–45.  https://doi.org/10.1016/j.matbio.2014.08.013 CrossRefGoogle Scholar
  54. Myers LK et al (2000) The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. Arthritis Rheum 43:2687–2693.  https://doi.org/10.1002/1529-0131(200012)43:12<2687:aid-anr8>3.0.co;2-9 CrossRefGoogle Scholar
  55. Neame PJ, Sandy JD (1994) Cartilage aggrecan. Biosynthesis, degradation and osteoarthritis. J Fla Med Assoc 81:191–193Google Scholar
  56. Neander G, Eriksson LO, Wallin-Boll E, Ersmark H, Grahnen A (1992) Pharmacokinetics of intraarticular indomethacin in patients with osteoarthritis. Eur J Clin Pharmacol 42:301–305CrossRefGoogle Scholar
  57. Onur T, Wu R, Metz L, Dang A (2014) Characterisation of osteoarthritis in a small animal model of type 2 diabetes mellitus. Bone Jt Res 3:203–211.  https://doi.org/10.1302/2046-3758.36.2000244 CrossRefGoogle Scholar
  58. Pitcher T, Sousa-Valente J, Malcangio M (2016) The monoiodoacetate model of osteoarthritis pain in the mouse. J Vis Exp 1:1.  https://doi.org/10.3791/53746 Google Scholar
  59. Pivec R, Johnson AJ, Harwin SF, Mont MA (2013) Differentiation, diagnosis, and treatment of osteoarthritis, osteonecrosis, and rapidly progressive osteoarthritis. Orthopedics 36:118–125.  https://doi.org/10.3928/01477447-20130122-04 CrossRefGoogle Scholar
  60. Poole AR (2002) Can serum biomarker assays measure the progression of cartilage degeneration in osteoarthritis? Arthritis Rheum 46:2549–2552.  https://doi.org/10.1002/art.10586 CrossRefGoogle Scholar
  61. Poulet B, Beier F (2016) Targeting oxidative stress to reduce osteoarthritis. Arthritis Res Ther 18:32.  https://doi.org/10.1186/s13075-015-0908-7 CrossRefGoogle Scholar
  62. Qin J et al (2013) Effect of Angelica sinensis polysaccharides on osteoarthritis in vivo and in vitro: a possible mechanism to promote proteoglycans synthesis. Evid Based Complement Alternat Med 2013:794761.  https://doi.org/10.1155/2013/794761 Google Scholar
  63. Rehak NN, Janes G, Young DS (1977) Calorimetric enzymic measurement of uric acid in serum. Clin Chem 23:195–199Google Scholar
  64. Rojas-Ortega M, Cruz R, Vega-Lopez MA, Cabrera-Gonzalez M, Hernandez-Hernandez JM, Lavalle-Montalvo C, Kouri JB (2015) Exercise modulates the expression of IL-1beta and IL-10 in the articular cartilage of normal and osteoarthritis-induced rats. Pathol Res Pract 211:435–443.  https://doi.org/10.1016/j.prp.2015.01.008 CrossRefGoogle Scholar
  65. Ruan MZ et al (2013) Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med 5:176ra134.  https://doi.org/10.1126/scitranslmed.3005409 CrossRefGoogle Scholar
  66. Ruggiero C et al (2006) Uric acid and inflammatory markers. Eur Heart J 27:1174–1181.  https://doi.org/10.1093/eurheartj/ehi879 CrossRefGoogle Scholar
  67. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205CrossRefGoogle Scholar
  68. Shadyab AH et al (2018) Prospective associations of C-reactive protein (CRP) levels and CRP genetic risk scores with risk of total knee and hip replacement for osteoarthritis in a diverse cohort. Osteoarthr Cartil 26:1038–1044.  https://doi.org/10.1016/j.joca.2018.05.002 CrossRefGoogle Scholar
  69. Struglics A, Larsson S, Pratta MA, Kumar S, Lark MW, Lohmander LS (2006) Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments. Osteoarthr Cartil 14:101–113.  https://doi.org/10.1016/j.joca.2005.07.018 CrossRefGoogle Scholar
  70. Sun Y, Brenner H, Sauerland S, Gunther KP, Puhl W, Sturmer T (2000) Serum uric acid and patterns of radiographic osteoarthritis—the Ulm Osteoarthritis Study. Scand J Rheumatol 29:380–386CrossRefGoogle Scholar
  71. Teeple E, Jay GD, Elsaid KA, Fleming BC (2013) Animal models of osteoarthritis: challenges of model selection and analysis. AAPS J 15:438–446.  https://doi.org/10.1208/s12248-013-9454-x CrossRefGoogle Scholar
  72. Udo M et al (2016) Monoiodoacetic acid induces arthritis and synovitis in rats in a dose- and time-dependent manner: proposed model-specific scoring systems. Osteoarthr Cartil 24:1284–1291.  https://doi.org/10.1016/j.joca.2016.02.005 CrossRefGoogle Scholar
  73. Vogel KG, Heinegard D (1985) Characterization of proteoglycans from adult bovine tendon. J Biol Chem 260:9298–9306Google Scholar
  74. Wang M, Sampson ER, Jin H, Li J, Ke QH, Im HJ, Chen D (2013) MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Res Ther 15:R5.  https://doi.org/10.1186/ar4133 CrossRefGoogle Scholar
  75. Wang CJ, Cheng JH, Chou WY, Hsu SL, Chen JH, Huang CY (2017) Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee. Int J Med Sci 14:213–223.  https://doi.org/10.7150/ijms.17469 CrossRefGoogle Scholar
  76. Wluka AE, Lombard CB, Cicuttini FM (2013) Tackling obesity in knee osteoarthritis. Nat Rev Rheumatol 9:225–235.  https://doi.org/10.1038/nrrheum.2012.224 CrossRefGoogle Scholar
  77. Yassin NZ, El-Shenawy SM, Abdel-Rahman RF, Yakoot M, Hassan M, Helmy S (2015) Effect of a topical copper indomethacin gel on inflammatory parameters in a rat model of osteoarthritis. Drug Des Devel Ther 9:1491–1498.  https://doi.org/10.2147/DDDT.S79957 Google Scholar
  78. Zheng Z, Wang L, Pan J (2017) Estradiol and proinflammatory cytokines stimulate ISG20 expression in synovial fibroblasts of patients with osteoarthritis. Intractable Rare Dis Res 6:269–273.  https://doi.org/10.5582/irdr.2017.01062 CrossRefGoogle Scholar
  79. Zhuang C, Wang Y, Zhang Y, Xu N (2018) Oxidative stress in osteoarthritis and antioxidant effect of polysaccharide from Angelica sinensis. Int J Biol Macromol 115:281–286.  https://doi.org/10.1016/j.ijbiomac.2018.04.083 CrossRefGoogle Scholar
  80. Ziaei A, Sahranavard S, Gharagozlou MJ, Faizi M (2016) Preliminary investigation of the effects of topical mixture of Lawsonia inermis L. and Ricinus communis L. leaves extract in treatment of osteoarthritis using MIA model in rats. Daru 24:12.  https://doi.org/10.1186/s40199-016-0152-y CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kizhakkeppurath Kumaran Ajeeshkumar
    • 1
  • Kalladath Venugopal Vishnu
    • 1
  • Raju Navaneethan
    • 1
  • Kumar Raj
    • 2
  • Kuttipurath Raghavan Remyakumari
    • 1
  • Thangaraj Raja Swaminathan
    • 2
  • Mathew Suseela
    • 1
  • Kurukkan Kunnath Asha
    • 1
    Email author
  • Gopinathan Pillai Sreekanth
    • 3
    Email author
  1. 1.Biochemistry and Nutrition DivisionICAR-Central Institute of Fisheries TechnologyKochiIndia
  2. 2.Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic ResourcesKochiIndia
  3. 3.Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations