Advertisement

Cerebrospinal inflammatory response following scorpion envenomation: role of histamine H1 and H3 receptors

  • Amal Megdad-Lamraoui
  • Sonia Adi-Bessalem
  • Fatima Laraba-DjebariEmail author
Original Article

Abstract

Background

The mechanism of the inflammatory process induced by scorpion venom in the cerebrospinal tissues has not yet been completely elucidated. Therefore, we aimed to investigate the role of histamine through its H1 and H3 receptors in this process.

Methods

Histamine H1 and H3 receptor antagonists, Hydroxyzine (10 mg/kg) and Betaserc (20 mg/kg), respectively, were administered by intraperitoneal route to mice 1 h before subcutaneous envenomation with a subletal dose (0.5 mg/kg) of Androctonus australis hector venom. Cerebrospinal inflammation response was assessed 24 h after envenomation by evaluating the vascular permeability changes, inflammatory cell infiltration, oxidative/nitrosative stress marker levels (hydrogen peroxide, nitric oxide, malondialdehyde, glutathione and catalase) and by histological examination of cerebrospinal tissue.

Results

Envenomed mice displayed an installation of an inflammatory response marked by increased vascular permeability (76% and 68% in brain and spinal cord, respectively, in comparison to controls), inflammatory cell infiltration, increased pro-oxidant levels and decreased anti-oxidant markers (p  < 0.05 to p  < 0.001). Scorpion venom also induced structural changes in brain and spinal cord tissues. Hydroxyzine seemed to be more efficient than Betaserc in the prevention of the induced cerebrospinal inflammation response, as evidenced by the decreased vascular permeability, inflammatory cell infiltration, pro-oxidant levels, increased anti-oxidant defense (p  < 0.05 to p  < 0.001) and a reduction of the anatomo-pathological alterations.

Conclusion

The results showed that the histamine H1 receptor is more involved in the induced central nervous system inflammatory response during scorpion envenomation.

Keywords

Scorpion venom Inflammatory response Cerebrospinal tissues Histamine H1-receptor Histamine H3-receptor 

Abbreviations

Aah

Androctonus australis hector

cAMP

Cyclic adenosine monophosphate

H2O2

Hydrogen peroxide

IL

Interleukin

MAPK

Mitogen-activated protein kinases

MDA

Malondialdehyde

NF-kB

Nuclear factor-kappa B

NMRI

Naval Medical Research Institute

NO

Nitric oxide

PRRs

Pattern-recognition receptors

TLR

Toll-like receptor

TNF-α

Tumor necrosis factor-α

Notes

References

  1. Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F (2008) Pathophysiological effects of Androctonus australis hector scorpion venom: tissue damages and inflammatory response. Exp Toxicol Pathol 60:373–380CrossRefGoogle Scholar
  2. Adi-Bessalem S, Lamraoui A, Laraba-Djebari F (2016) Role of histamine H4-receptor as a pharmacological target in the induced hepatic and renal inflammatory response by scorpion venom. Toxicon 116:79–80CrossRefGoogle Scholar
  3. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  4. Andrade MV, Lisboa FA, Portugal AL, Arantes RME, Cunha-Melo JR (2007) Scorpion venom increases mRNA expression of lung cytokines. Comp Biochem Physiol A 146:581–587CrossRefGoogle Scholar
  5. Bachert C (2002) The role of histamine in allergic disease: re-appraisal of its inflammatory potential. Allergy 57:287–296CrossRefGoogle Scholar
  6. Bakker R, Schoonus S, Smit M, Timmerman H, Leurs R (2001) Histamine H1-receptor activation of NF-kB: roles for Gbg and G aq/11-subunits in constitutive and agonist-mediated signaling. Mol Pharmacol 60:1133–1142CrossRefGoogle Scholar
  7. Banks WA, Lynch JL, Price TO (2009) Cytokines and the blood–brain barrier. In: Siegel A, Zalcman S (eds) The neuroimmunological basis of behavior and mental disorders, vol 2009. Springer Science+ Business Media, pp 3–17Google Scholar
  8. Cannon KE, Leurs R, Hough LB (2007) Activation of peripheral and spinal histamine H3 receptors inhibits formalin-induced inflammation and nociception, respectively. Pharmacol Biochem Behav 88:122–129CrossRefGoogle Scholar
  9. Cavari Y, Lazar I, Shelef I, Sofer S (2013) Lethal brain edema, shock, and coagulopathy after scorpion envenomation. Wilderness Environ Med 24:23–27CrossRefGoogle Scholar
  10. Chikahisa S, Kodama T, Soya A, Sagawa Y, Ishimaru Y, Séi H, Nishino S (2013) Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states. PLoS ONE 8:e78434CrossRefGoogle Scholar
  11. Clot-Faybesse O, Guieu R, Rochat H, Devaux C (1999) Toxicity during early development of the mouse nervous system of a scorpion neurotoxin active on sodium channels. Life Sci 66:185–192CrossRefGoogle Scholar
  12. Cupo P, Jurca M, Azevedo-Marques MM, Oliveira JSM, Hering SE (1994) Severe scorpion envenomation in Brazil: clinical, laboratory and anatomopathological aspects. Rev Inst Med Tropic São Paulo 36:67–76CrossRefGoogle Scholar
  13. De Matos IM, Rocha OA, Leite R, Freire-Maia L (1997) Lung oedema induced by Tityus serrulatus scorpion venom in the rat. Comp Biochem Physiol C 118:143–148CrossRefGoogle Scholar
  14. de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, Kuiper J (1996) The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64:37–43CrossRefGoogle Scholar
  15. De-Matos I, Talvani A, Rocha O, Freire-Maia L, Teixeira M (2001) Evidence for a role of mast cells in the lung edema induced by Tityus serrulatus venom in rats. Toxicon 39:863–867CrossRefGoogle Scholar
  16. Dux E, Joó F, Gecse A, Mezei Z, Dux L, Hideg J, Telegdy G (1982) Histamine-stimulated prostaglandin synthesis in rat brain microvessels. Agents Actions 12:146–148CrossRefGoogle Scholar
  17. Dux E, Temesvari P, Szerdahelyi P, Nagy A, Kovacs J, Joo F (1987) Protective effect of antihistamines on cerebral oedema induced by experimental pneumothorax in newborn piglets. Neuroscience 22:317–321CrossRefGoogle Scholar
  18. Elsner J, Dichmann S, Kapp A (1995) Activation of the respiratory burst in human eosinophils by chemotaxins requires intracellular calcium fluxes. J Investig Dermatol 105:231–236CrossRefGoogle Scholar
  19. Farghly W, Ali F (1999) A clinical and neurophysiological study of scorpion envenomation in Assiut, Upper Egypt. Acta Paediatr 88:290–294CrossRefGoogle Scholar
  20. Folkerts G, Kloek J, Muijsers RB, Nijkamp FP (2001) Reactive nitrogen and oxygen species in airwayinflammation. Eur J Pharmacol 429:251–262CrossRefGoogle Scholar
  21. Fukuhara YDM, Reis ML, Dellalibera-Joviliano R, Cunha FQC, Donadi EA (2003) Increased plasma levels of IL-1 beta, IL-6, IL-8, IL-10 and TNF-alpha in patients moderately or severely envenomed by Tityus serrulatus scorpion sting. Toxicon 41:49–55CrossRefGoogle Scholar
  22. Gomez-Nicola D, Teeling J, Guaza C, Godbout JP, Taub DD (2013) The role of inflammatory mediators in immune-to-brain communication during health and disease. Mediators Inflamm 2013:1–3CrossRefGoogle Scholar
  23. Guidine PAM, Mesquita MBS, Moraes-Santos T, Massensini AR, Moraes MFD (2009) Electroencephalographic evidence of brainstem recruitment during scorpion envenomation. Neurotoxicology 30:90–96CrossRefGoogle Scholar
  24. Haddad-Ishak-boushaki W, Laraba-Djebari F (2017) Age-related changes in inflammatory response after experimental envenomation: impact on the susceptibility to androctonus australis hector venom. Inflammation 40:1131–1142CrossRefGoogle Scholar
  25. Ismail M (1995) The scorpion envenoming syndrome. Toxicon 33:825–858CrossRefGoogle Scholar
  26. Joo F, Rakonczay Z, Wollemann M (1975) cAMP-mediated regulation of the permeability in the brain capillaries. Experientia 31:582–584CrossRefGoogle Scholar
  27. Karin M, Delhase M (2000) The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signalling. In: Seminars in immunology, vol 12. Elsevier, Amsterdam, pp 85–98Google Scholar
  28. Karnushina I, Palacios J, Barbin G, Dux E, Joo F, Schwart J (1980) Studies on a capillary-rich fraction isolated from brain: histaminic components and characterization of the histamine receptors linked to adenylate cyclase. J Neurochem 34:1201–1208CrossRefGoogle Scholar
  29. Katoh Y, Niimi M, Yamamoto Y, Kawamura T, Morimoto-Ishizuka T, Sawada M, Takemori H, Yamatodani A (2001) Histamine production by cultured microglial cells of the mouse. Neurosci Lett 305:181–184CrossRefGoogle Scholar
  30. Krawisz J, Sharon P, Stenson W (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity: assessment of inflammation in rat and hamster models. Gastroenterology 87:1344–1350Google Scholar
  31. Lamraoui A, Adi-Bessalem S, Laraba-Djebari F (2014) Modulation of tissue inflammatory response by histamine receptors in scorpion envenomation pathogenesis: involvement of H4 receptor. Inflammation 37:1689–1704CrossRefGoogle Scholar
  32. Levi R, Seyedi N, Schaefer U, Estephan R, Mackins CJ, Tyler E, Silver RB (2007) Histamine H3-receptor signaling in cardiac sympathetic nerves: identification of a novel MAPK-PLA2-COX-PGE2-EP3R pathway. Biochem Pharmacol 73:1146–1156CrossRefGoogle Scholar
  33. Liu T, Bai ZT, Pang XY, Chai ZF, Jiang F, Ji YH (2007) Degranulation of mast cells and histamine release involved in rat pain-related behaviors and edema induced by scorpion Buthus martensi Karch venom. Eur J Pharmacol 575:46–56CrossRefGoogle Scholar
  34. Lu C, Diehl SA, Noubade R, Ledoux J, Nelson MT, Spach K, Zachary JF, Blankenhorn EP, Teuscher C (2010) Endothelial histamine H1 receptor signaling reduces blood–brain barrier permeability and susceptibility to autoimmune encephalomyelitis. Proc Natl Acad Sci USA 107:18967–18972CrossRefGoogle Scholar
  35. Marone G, Florio G, Petraroli A, Triggiani M, de Paulis A (2001) Human mast cells and basophils in HIV-1 infection. Trends Immunol 22:229–232CrossRefGoogle Scholar
  36. Nascimento EB Jr, Costa KA, Bertollo CM, Oliveira AC, Rocha LT, Souza AL, Gloria MB, Moraes-Santos T, Coelho MM (2005) Pharmacological investigation of the nociceptive response and edema induced by venom of the scorpion Tityus serrulatus. Toxicon 45:585–593CrossRefGoogle Scholar
  37. Nencioni ALA, Lourenço GA, Lebrun I, Florio JC, Dorce VA (2009) Central effects of Tityus serrulatus and Tityus bahiensis scorpion venoms after intraperitoneal injection in rats. Neurosci Lett 463:234–238CrossRefGoogle Scholar
  38. Nunan EA, Moraes MF, Cardoso VN, Moraes-Santos T (2003) Effect of age on body distribution of Tityustoxin from Tityus serrulatus scorpion venom in rats. Life Sci 73:319–325CrossRefGoogle Scholar
  39. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal-tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  40. Passani MB, Ballerini C (2012) Histamine and neuroinflammation: insights from murine experimental autoimmune encephalomyelitis. Front Syst Neurosci 6:32CrossRefGoogle Scholar
  41. Petricevich VL (2010) Scorpion venom and the inflammatory response. Mediators Inflamm 2010:903295CrossRefGoogle Scholar
  42. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170CrossRefGoogle Scholar
  43. Pincus SH, DiNapoli A-M, Schooley WR (1982) Superoxide production by eosinophils: activation by histamine. J Investig Dermatol 79:53–57CrossRefGoogle Scholar
  44. Raible DG, Lenahan T, Fayvilevich Y, Kosinski R, Schulman ES (1994) Pharmacologic characterization of a novel histamine receptor on human eosinophils. Am J Respir Crit Care Med 149:1506–1511CrossRefGoogle Scholar
  45. Revelo MP, Bambirra EA, Ferreira AP, Diniz CR, Chávez-Olórtegui C (1996) Body distribution of Tityus serrulatus scorpion venom in mice and effects of scorpion antivenom. Toxicon 34:1119–1125CrossRefGoogle Scholar
  46. Rocha SM, Saraiva T, Cristóvão AC, Ferreira R, Santos T, Esteves M, Saraiva C, Je G, Cortes L, Valero J (2016) Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J Neuroinflamm 13:137CrossRefGoogle Scholar
  47. Rochfort KD, Cummins PM (2015) The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans 43:702–706CrossRefGoogle Scholar
  48. Schmitt C, Strazielle N, Ghersi-Egea J-F (2012) Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain. J Neuroinflamm 9:187CrossRefGoogle Scholar
  49. Sifi A, Adi-Bessalem S, Laraba-Djebari F (2017) Role of angiotensin II and angiotensin type-1 receptor in scorpion venom-induced cardiac and aortic tissue inflammation. Exp Mol Pathol 102:32–40CrossRefGoogle Scholar
  50. Snyder S, Snowman A (1987) Receptor effects of cetirizine. Ann Allergy 59:4–8Google Scholar
  51. Sun J, Zhang XJ, Broderick M, Fein H (2003) Measurement of nitric oxide production in biological systems by using Griess Reaction assay. Sensors 3:276–284CrossRefGoogle Scholar
  52. Teuscher C, Subramanian M, Noubade R, Gao JF, Offner H, Zachary JF, Blankenhorn EP (2007) Central histamine H3 receptor signaling negatively regulates susceptibility to autoimmune inflammatory disease of the CNS. Proc Natl Acad Sci USA 104:10146–10151CrossRefGoogle Scholar
  53. Van Oosterhout A, Van Ark I, Hofman G, Van Der Linde H, Fattah D, Nijkamp F (1996) Role of interleukin-5 and substance P in development of airway hyperreactivity to histamine in guinea-pigs. Eur Respir J 9:493–499CrossRefGoogle Scholar
  54. Voronov E, Apte R, Sofer S (1999) The systemic inflammatory response syndrome related to the release of cytokines following severe envenomation. J Venom Anim Toxins 5:5–33CrossRefGoogle Scholar
  55. Zhang Y (2000) Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Carcinogenesis 21:1175–1182CrossRefGoogle Scholar
  56. Zhu J, Qu C, Lu X, Zhang S (2014) Activation of microglia by histamine and substance P. Cell Physiol Biochem 34:768–780CrossRefGoogle Scholar
  57. Zoccal KF, Bitencourt CD, Paula-Silva FWG, Sorgi CA, Bordon KDF, Arantes EC, Faccioli LH (2014) TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. Plos ONE 9.2:e88174Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.USTHBLaboratory of Cellular and Molecular Biology, Faculty of Biological SciencesAlgiersAlgeria

Personalised recommendations