, Volume 26, Issue 2, pp 505–519 | Cite as

Arctium minus crude extract presents antinociceptive effect in a mice acute gout attack model

  • Susana Paula Moreira Fischer
  • Indiara Brusco
  • Camila Camponogara
  • Mariana Piana
  • Henrique Faccin
  • Luciana Assis Gobo
  • Leandro Machado de Carvalho
  • Sara Marchesan Oliveira
Original Article


Gout is a disorder that triggers a severe inflammatory reaction which generates episodes of intense pain and discomfort to the patient. Arctium minus (Hill) Bernh. (Asteraceae) is known as “burdock” and displays anti-inflammatory, antinociceptive, against rheumatic pain and radical-scavenging activities. Species of the genus Arctium have been used in assistant therapy of gout and other inflammatory processes. We investigated the antinociceptive and anti-edematogenic effects of the crude extract of A. minus seeds in an acute gout attack model induced by intra-articular injection of monosodium urate (MSU) crystals in adult male Swiss mice (25–30 g). The crude extract of A. minus (100 mg/kg, p.o.) reduced the mechanical allodynia induced by the injection of MSU (1.25 mg/site, i.a.) from 4 until 8 h after its administration. A. minus seeds crude extract prevented mechanical allodynia at doses of 30 and 100 mg/kg, but not 10 mg/kg. Allopurinol (10 µg/mL) and A. minus crude extract (10–300 µg/mL) inhibited the xanthine oxidase activity in vitro. The A. minus seeds crude extract did not cause adverse effects since did not change the toxicological parameters evaluated. A. minus crude extract can be used as an assistant therapy of gout pain, supporting its traditional use, without causing adverse effects.

Graphical Abstract


Joint MSU Xanthine oxidase Antioxidant Pain Burdock 



Monosodium urate


Aspartate aminotransferase


Alanine aminotransferase


Non-steroidal anti-inflammatory drugs




Paw withdrawal threshold



The authors would like to thank Professor Juliano Ferreira for donated reagents. This study was supported by the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul—FAPERGS (process number 16/2551-0000281-9) and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq. We thank CNPq and CAPES for their fellowship support.

Author contributions

All authors had full access to all the data in the study and take responsibility for the integrity and accuracy of the data analysis. Study concept and design: SPMF, IB, and SMO. Acquisition of data: SPMF, IB, CC, MP, HF, LAG, LMC, and SMO. Analysis and interpretation of data: SPMF, IB, CC, MP, HF, LAG, LMC, and SMO. Drafting of the manuscript: SPMF, IB, MP, and SMO. Study supervision: SMO.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All procedures performed were in accordance with international and national and were approved by Ethics Committee for Animal Research of the Federal University of Santa Maria (process number 1946180116/2016).


  1. Abdul-Wahab IR, Guilhon CC, Fernandes PD, Boylan F (2012) Anti-nociceptive activity of Pereskia bleo Kunth. (Cactaceae) leaves extracts. J Ethnopharmacol 144:741–746. doi: 10.1016/j.jep.2012.10.029 CrossRefPubMedGoogle Scholar
  2. Alonso-Castro AJ, Zapata-Morales JR, González-Chávez MM, Carranza-Álvarez C, Hernández-Benavides DM, Hernández-Morales A (2016) Pharmacological effects and toxicity of Costus pulverulentus C. Presl (Costaceae). J Ethnopharmacol 180:124–130. doi: 10.1016/j.jep.2016.01.011 CrossRefPubMedGoogle Scholar
  3. Bagdas D, Cinkilic N, Ozboluk HY, Ozyigit MO, Gurum MS (2013) Antihyperalgesic activity of chlorogenic acid in experimental neuropathic pain. J Nat Med 67:698–704. doi: 10.1007/s11418-012-0726-z CrossRefPubMedGoogle Scholar
  4. Busso N, So A (2010) Mechanisms of inflammation. Int J Biochem Cell Biol 42:479. doi: 10.1016/j.biocel.2010.02.001 CrossRefGoogle Scholar
  5. But PPH, Kimura T, Guo JX, Sung CK, Han BH (1997) International collation of traditional and folk medicine: Northeast Asia Part I. World Scientific, Singapore, pp 202–203CrossRefGoogle Scholar
  6. Calixto JB, Beirith A, Ferreira J, Santos ARS, Filho VC, Yunes RA (2000) Naturally occurring antinociceptive substances from plants. Phyther Res 14:401–418. doi: 10.1002/1099-1573(200009)14:6<401:AID-PTR762>3.0.CO;2-H CrossRefGoogle Scholar
  7. Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SMY, Leung GPH, Yu PHF, Chan SW (2011) A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 19:245–254. doi: 10.1007/s10787-010-0062-4 CrossRefPubMedGoogle Scholar
  8. Chen L, Yin H, Lan Z, Ma S, Zhang C, Yang Z, Li P, Lin B (2011) Anti-hyperuricemic and nephroprotective effects of Smilax china L. J Ethnopharmacol 135:399–405. doi: 10.1016/j.jep.2011.03.033 CrossRefPubMedGoogle Scholar
  9. Chicca A, Marazzi J, Gertsch J (2012) The antinociceptive triterpene β-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydrolysis without directly targeting cannabinoid receptors. Br J Pharmacol 167:1596–1608. doi: 10.1111/j.1476-5381.2012.02059.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Choi HK, Mount DB, Reginato AM (2005) Pathogenesis of gout. Ann Intern Med 143:499–516CrossRefPubMedGoogle Scholar
  11. Cocco MT, Congiu C, Onnis V, Morelli M, Cauli O (2003) Synthesis of ibuprofen heterocyclic amides and investigation of their analgesic and toxicological properties. Eur J Med Chem 38:513–518. doi: 10.1016/S0223-5234(03)00074-6 CrossRefPubMedGoogle Scholar
  12. Cronstein BN, Esserman PR (2013) Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis. J Clin Rheumatol 19:19–29. doi: 10.1097/RHU.0b013e31827d8790.Mechanistic PubMedPubMedCentralGoogle Scholar
  13. De Lima FO, Alves V, Filho JMB, Da Silva Almeida JRG, Rodrigues LC, Soares MBP, Villarreal CF (2013) Antinociceptive effect of lupeol: evidence for a role of cytokines inhibition. Phyther Res 27:1557–1563. doi: 10.1002/ptr.4902 Google Scholar
  14. De Smet PAGM, Keller K, Hänsel R, Chandler RF (1993) Adverse effects of herbal drugs, vol 2. Springer, Berlin. doi:  10.1007/978-3-642-48906-8
  15. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462CrossRefPubMedGoogle Scholar
  16. Erdemoglu N, Turan NN, Akkol EK, Sener B, Abacioglu N (2009) Estimation of anti-inflammatory, antinociceptive and antioxidant activities on Arctium minus (Hill) Bernh. ssp. minus. J Ethnopharmacol 121:318–323. doi: 10.1016/j.jep.2008.11.009 CrossRefPubMedGoogle Scholar
  17. Ferracane R, Graziani G, Gallo M, Fogliano V, Ritieni A (2010) Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J Pharm Biomed Anal 51:399–404. doi: 10.1016/j.jpba.2009.03.018 CrossRefPubMedGoogle Scholar
  18. Ferraz-Filha ZS, de Paula MC, Araujo M, Andrade IP, Dutra R, Saude-Guimaraes DAS (2016) Tabebuia roseoalba: in vivo hypouricemic and anti-inflammatory effects of its ethanolic extract and constituents. Planta Med 82:1395–1402. doi: 10.1055/s-0042-105878 CrossRefPubMedGoogle Scholar
  19. Fujita T, Sezik E, Tabata M, Yesilada E, Honda G, Takeda Y, Tanaka T, Takaishi Y (1995) Traditional medicine in Turkey VII. Folk medicine in middle and west Black Sea regions. Econ Bot 49:406–422CrossRefGoogle Scholar
  20. Hara K, Haranishi Y, Kataoka K, Takahashi Y, Terada T, Nakamura M, Sata T (2014) Chlorogenic acid administered intrathecally alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Eur J Pharmacol 723:459–464. doi: 10.1016/j.ejphar.2013.10.046 CrossRefPubMedGoogle Scholar
  21. Hoffmeister C, Trevisan G, Rossato MF, Oliveira SM, Gomez MV, Ferreira J (2011) Role of TRPV1 in nociception and edema induced by monosodium urate crystals in rats. Pain 152(2011):1777–1788. doi: 10.1016/j.pain.2011.03.025 CrossRefPubMedGoogle Scholar
  22. Hoffmeister C, Silva MA, Rossato MF, Trevisan G, Oliveira SM, Guerra GP, Silva R, Ferreira J (2013) Participation of the TRPV1 receptor in the development of acute gout attacks. Rheumatology (Oxford). doi: 10.1093/rheumatology/ket352 Google Scholar
  23. Irondi E, Agboola S, Oboh G, Boligon A, Athayde M, Shode F (2016) Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro. J Intercult Ethnopharmacol 5:122–130. doi: 10.5455/jice.20160321115402 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh M, Gogia M, Perez-ruiz F, Taylor W, Lioté F (2012) American College of Rheumatology Guidelines for Management of Gout. Part I: Systematic non-pharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken) 64:1431–1446. doi: 10.1002/acr.21772.2012 CrossRefGoogle Scholar
  25. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220. doi: 10.1038/nrd1657 CrossRefPubMedGoogle Scholar
  26. Lima RDCL, Ferrari FC, De Souza MR, de Sa Pereira BM, De Paula CA, Saúde-Guimarães DA (2015) Effects of extracts of leaves from Sparattosperma leucanthum on hyperuricemia and gouty arthritis. J Ethnopharmacol 161:194–199. doi: 10.1016/j.jep.2014.11.051 CrossRefGoogle Scholar
  27. Lima-Júnior RCP, Oliveira FA, Gurgel LA, Cavalcante ÍJM, Santos KA, Campos DA, Vale CAL, Silva RM, Chaves MH, Rao VSN, Santos FA (2006) Attenuation of visceral nociception by α- and β-amyrin, a triterpenoid mixture isolated from the resin of Protium heptaphyllum, in mice. Planta Med 72:34–39. doi: 10.1055/s-2005-873150 CrossRefPubMedGoogle Scholar
  28. Lin KW, Huang AM, Tu HY, Lee LY, Wu CC, Hour TC, Yang SC, Pu YS, Lin CN (2011) Xanthine oxidase inhibitory triterpenoid and phloroglucinol from guttiferaceous plants inhibit growth and induced apoptosis in human ntub1 cells through a ROS-dependent mechanism. J Agric Food Chem 59:407–414. doi: 10.1021/jf1041382 CrossRefPubMedGoogle Scholar
  29. Lorenzi H, Matos FJA (2002) Plantas medicinais no Brasil: nativas e exóticas, 1st edn. Instituto Plantarum, Nova OdessaGoogle Scholar
  30. Martinon F, Pétrilli V, Mayor A, Tardivel J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nat Publ Gr 440:237–241. doi: 10.1038/nature04516 CrossRefGoogle Scholar
  31. Meng ZQ, Tang ZH, Yan YX, Guo C-R, Cao L, Ding G, Huang W-Z, Wang Z-Z, Wang KDG, Xiao W, Yang Z-L (2014) Study on the anti-gout activity of chlorogenic acid: improvement on hyperuricemia and gouty inflammation. Am J Chin Med 42:1471–1483. doi: 10.1142/S0192415X1450092X CrossRefPubMedGoogle Scholar
  32. Morucci F, Lopez P, Miño J, Ferraro G, Gorzalczany S (2012) Antinociceptive activity of aqueous extract and isolated compounds of Lithrea molleoides. J Ethnopharmacol 142:401–406. doi: 10.1016/j.jep.2012.05.009 CrossRefPubMedGoogle Scholar
  33. Nuki G, Simkin PA (2006) A concise history of gout and hyperuricemia and their treatment. Arthritis Res Ther 8(Suppl 1):S1–S5. doi: 10.1186/ar1906 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oliveira SM, Gewehr C, Dalmolin GD, Cechinel AA, Wentz A, Lourega RV, Sehnem RC, Zanatta N, Martins MAP, Rubin AA, Bonacorso HG, Ferreira J (2009) Antinociceptive effect of a novel tosylpyrazole compound in mice. Basic Clin Pharmacol Toxicol 104:122–129. doi: 10.1111/j.1742-7843.2008.00353.x CrossRefPubMedGoogle Scholar
  35. Oliveira SM, Silva CR, Trevisan G, Villarinho JG, Cordeiro MN, Richardson M, Borges MH, Castro CJ, Gomez MV, Ferreira J (2016) Antinociceptive effect of a novel armed spider peptide Tx3-5 in pathological pain models in mice. Pflug Arch Eur J Physiol 468:881–894. doi: 10.1007/s00424-016-1801-1 CrossRefGoogle Scholar
  36. Otuki MF, Ferreira J, Lima FV, Meyre-Silva C, Muller LA, Cani GS, Santos ARS, Yunes RA (2005) Antinociceptive properties of mixture of α-amyrin and β-amyrin triterpenes: evidence for participation of protein kinase C and protein kinase A pathways. J Pharmacol Exp Ther 313:310–318. doi: 10.1124/jpet.104.071779.view CrossRefPubMedGoogle Scholar
  37. Piana M, Camponogara C, Boligon AA, Machado MM, de Brum TF, Oliveira SM, Bauermann L (2016) Topical anti-inflammatory activity of Solanum corymbiflorum leaves. J Ethnopharmacol 179:16–21. doi: 10.1016/j.jep.2015.12.036 CrossRefPubMedGoogle Scholar
  38. Qu Z, Liu T, Qiu Q, Li J, Hu W (2014) Inhibition of acid-sensing ion channels by chlorogenic acid in rat dorsal root ganglion neurons. Neurosci Lett 567:35–39. doi: 10.1016/j.neulet.2014.03.027 CrossRefPubMedGoogle Scholar
  39. Ramonda R, Oliviero F, Galozzi P, Frallonardo P, Lorenzin M, Ortolan A, Scanu A, Punzi L (2015) Molecular mechanisms of pain in crystal-induced arthritis. Best Pract Res Clin Rheumatol 29:98–110. doi: 10.1016/j.berh.2015.04.025 CrossRefPubMedGoogle Scholar
  40. Richette P, Bardin T (2010) Gout. Lancet 375:318–328. doi: 10.1016/S0140 CrossRefPubMedGoogle Scholar
  41. Robbins LR (2013) Natural variability in phenolic and sesquiterpene constituents among burdock (Arctium lappa L. and Arctium minus L.) leaves for potential medicinal interests. J Chem Inf Model 53:1689–1699. doi: 10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  42. Roddy E, Zhang W, Doherty M (2007) Are joints affected by gout also affected by osteoarthritis? Ann Rheum Dis 66:1374–1377. doi: 10.1136/ard.2006.063768 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rodrigues MRA, Kanazawa LKS, Das Neves TLM, Da Silva CF, Horst H, Pizzolatti MG, Santos ARS, Baggio CH, Werner MFDP (2012) Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J Ethnopharmacol 139:519–526. doi: 10.1016/j.jep.2011.11.042 CrossRefPubMedGoogle Scholar
  44. Rundles RW, Wyngaarden JB, Hitchings GH, Elion GB, Silberman HR (1963) Effects of a xanthine oxidase inhibitor on thiopurine metabolism, hyperuricaemia and gout. Trans Assoc Am Physicians 76:126–140Google Scholar
  45. Salvo F, Fourrier-Réglat A, Bazin F, Robinson P, Riera-Guardia N, Haag M, Caputi AP, Moore N, Sturkenboom MC, Pariente A (2011) Cardiovascular and gastrointestinal safety of NSAIDs: a systematic review of meta-analyses of randomized clinical trials. Clin Pharmacol Ther 89:855–866. doi: 10.1038/clpt.2011.45 CrossRefPubMedGoogle Scholar
  46. Silva CR, Fröhlich JK, Oliveira SM, Cabreira TN, Rossato MF, Trevisan G, Froeder AL, Bochi GV, Moresco RN, Athayde ML, Ferreira J (2013) The antinociceptive and anti-inflammatory effects of the crude extract of Jatropha isabellei in a rat gout model. J Ethnopharmacol 145:205–213. doi: 10.1016/j.jep.2012.10.054 CrossRefPubMedGoogle Scholar
  47. Silva CR, Oliveira SM, Hoffmeister C, Funck V, Guerra GP, Trevisan G, Tonello R, Rossato MF, Pesquero JB, Bader M, Oliveira MS, McDougall JJ, Ferreira J (2016) The role of kinin B 1 receptor and the effect of angiotensin I-converting enzyme inhibition on acute gout attacks in rodents. Ann Rheum Dis 75:260–268CrossRefPubMedGoogle Scholar
  48. Silveira SG, Faccin H, Claussen L, Goularte RB, Do Nascimento PC, Bohrer D, Cravo M, Leite LFM, de Carvalho LM (2016) A liquid chromatography–atmospheric pressure photoionization tandem mass spectrometric method for the determination of organosulfur compounds in petroleum asphalt cements. J Chromatogr A 1457:558–565. doi: 10.1016/j.chroma.2016.06.003 CrossRefGoogle Scholar
  49. Simão Da Silva KAB, Paszcuk AF, Passos GF, Silva ES, Bento AF, Meotti FC, Calixto JB (2011) Activation of cannabinoid receptors by the pentacyclic triterpene α, β-amyrin inhibits inflammatory and neuropathic persistent pain in mice. Pain 152:1872–1887. doi: 10.1016/j.pain.2011.04.005 CrossRefGoogle Scholar
  50. Stamp LK, Day RO, Yun J (2015) Allopurinol hypersensitivity: investigating the cause and minimizing the risk. Nat Publ Gr. doi: 10.1038/nrrheum.2015.132 Google Scholar
  51. Terkeltaub R (2010) Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol 6:30–38. doi: 10.1038/nrrheum.2011.7 CrossRefPubMedGoogle Scholar
  52. Trevisan G, Rossato MF, Walker CIB, Klafke JZ, Rosa F, Oliveira SM, Tonello R, Guerra GP, Boligon AA, Zanon RB, Athayde ML, Ferreira J (2012) Identification of the plant steroid α-spinasterol as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive properties. J Pharmacol Exp Ther 343:258–269. doi: 10.1124/jpet.112.195909 CrossRefPubMedGoogle Scholar
  53. Umamaheswari U, AsokKumar K, Somasundaram A, Sivashanmugam T, Subhadradevi V, Ravi TK (2007) Xanthine oxidase inhibitory activity of some Indian medical plants. J Ethnopharmacol 109:547–551. doi: 10.1016/j.jep.2006.08.020 CrossRefPubMedGoogle Scholar
  54. Verano J, González-Trujano ME, Déciga-Campos M, Ventura-Martínez R, Pellicer F (2013) Ursolic acid from Agastache mexicana aerial parts produces antinociceptive activity involving TRPV1 receptors, cGMP and a serotonergic synergism. Pharmacol Biochem Behav 110:255–264. doi: 10.1016/j.pbb.2013.07.020 CrossRefPubMedGoogle Scholar
  55. Weng CJ, Yen GC (2012) Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev 38:76–87. doi: 10.1016/j.ctrv.2011.03.001 CrossRefPubMedGoogle Scholar
  56. Zamudio-Cuevas Y, Hernández-Díaz C, Pineda C, Reginato AM, Cerna-Cortés JF, Ventura-Ríos L, López-Reyes A (2015) Molecular basis of oxidative stress in gouty arthropathy. Clin Rheumatol. doi: 10.1007/s10067-015-2933-y PubMedGoogle Scholar
  57. Zhang W, Doherty M, Bardin T, Pascual E, Barskova V, Conaghan P, Gerster J, Jacobs J, Leeb B, Lioté F, McCarthy G, Netter P, Nuki G, Perez-Ruiz F, Pignone A, Pimentão J, Punzi L, Roddy E, Uhlig T, Zimmermann-Gòrska I; EULAR Standing Committee for International Clinical Studies Including Therapeutics (2006) EULAR evidence based recommendations for gout. Part II: management. Report of a task force of the EULAR Standing Committee For International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 65(10):1312–1324. doi: 10.1136/ard.2006.055269 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhu Y, Pandya BJ, Choi HK (2011) Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheumatol 63:3136–3141. doi: 10.1002/art.30520 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Susana Paula Moreira Fischer
    • 1
    • 2
  • Indiara Brusco
    • 1
    • 2
  • Camila Camponogara
    • 1
    • 2
  • Mariana Piana
    • 3
  • Henrique Faccin
    • 3
  • Luciana Assis Gobo
    • 3
  • Leandro Machado de Carvalho
    • 3
    • 4
  • Sara Marchesan Oliveira
    • 1
    • 2
    • 5
  1. 1.Neurotoxicity and Psychopharmacology Laboratory, Center of Natural and Exact SciencesFederal University of Santa MariaSanta MariaBrazil
  2. 2.Graduate Program in Biological Sciences: Biochemistry ToxicologyFederal University of Santa MariaSanta MariaBrazil
  3. 3.Graduate Program in Pharmaceutical Sciences, Center of Health SciencesFederal University of Santa Maria (UFSM)Santa MariaBrazil
  4. 4.Department of ChemistryFederal University of Santa Maria (UFSM)Santa MariaBrazil
  5. 5.Department of Biochemistry and Molecular BiologyFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations