Advertisement

Inflammopharmacology

, Volume 23, Issue 5, pp 231–269 | Cite as

Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases

  • K. D. Rainsford
  • Ann L. Parke
  • Matthew Clifford-Rashotte
  • W. F. KeanEmail author
Review

Abstract

Objectives

This review examines the pharmacokinetics, modes of action and therapeutic properties of the anti-malarial drugs, hydroxychloroquine (HCQ) and chloroquine (CQ), in the treatment of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and related conditions, as well as osteoarthritis (OA).

Key findings

Both HCQ and CQ have historically been employed successfully for the treatment of SLE and RA for over 70 years. HCQ has been used extensively for SLE where it has a good reputation for controlling the dermatological complications in SLE. It has also been reported to effectively control the symptoms of Sjøgren’s syndrome, as well as preventing thrombosis in phospholipid antibody (aPL) syndrome. In RA and SLE, HCQ is preferred because of the lower incidence of gastrointestinal adverse reactions compared with CQ and it might have a lower risk of ocular adverse reactions. There is increasing evidence that HCQ may reduce atherosclerosis and risks of cardiovascular disease in rheumatic patients. Both HCQ and CQ have been shown to improve glycaemia and reduce the risks of type II diabetes mellitus. Although both HCQ and CQ are effective in low-moderate RA, HCQ is now preferred as part of combination therapy for more severe disease. The advantages of combination therapy are that the doses of the individual drugs may be lowered so reducing adverse reactions. Both HCQ and CQ are diastereoisomers, have basic properties and are given as the sulphate and phosphate salts. While being relatively well absorbed orally and with good bioavailability, they have long and variable plasma terminal elimination half-lives (approximately 40–60 days). This reflects their high volume of distribution, V D (HCQ 44,000L; CQ 65,000L) which extends into aqueous compartments, long mean residence time (HCQ 1300 h; CQ 900 h) and with about half the drugs (metabolites) undergoing renal clearance. The strong binding to melanin reflects the ocular injury and dermatological properties of these drugs. The consensus is that the occurrence of ocular adverse reactions can be minimised by close attention to the dose (which should be set on a body weight basis) with regular (e.g. quarterly) retinal examination. Although HCQ and CQ can pass through the placenta, the use of these drugs during pregnancy does not appear to risk harm to the baby and might be beneficial to the mother with SLE and her child by controlling the SLE disease activity, which is known to be an important factor affecting pregnancy outcome. The modes of action of HCQ and CQ in these arthritides represent somewhat of an enigma. Undoubtedly, these drugs have multiple actions related, in part, their ability to accumulate in lysosomes and autophagosomes of phagocytic cells as well as affecting MHC Class II expression and antigen presentation; actions of the production of pro-inflammatory cytokines [e.g. interleukin-1 (IL-1) tumour necrosis factor-α (TNFα)]; control of toll-like receptor-9 activation; and leucocyte generation of reactive oxygen species (ROS); i.e. antioxidant activity. The actions of these drugs on T and B cells are less clear but may depend on these leucocyte-mediated actions. Anti-malarials also protect against cytokine-mediated cartilage resorption. This and other actions may underlie the potential benefits in treating OA. The exact relationships of these various actions, mostly determined in vitro, have not been specifically defined in vivo or ex vivo in relation to clinical efficacy.

Outcomes

HCQ and CQ have a good reputation for being effective and relatively safe treatments in SLE, mild-moderate RA and Sjøgren’s syndrome. There is need for (a) more information on their mode of action in relation to the control of these diseases, (b) scope for developing formulations that have improved pharmacokinetic and therapeutic properties and safety, and (c) further exploring their use in drug combinations not only with other disease-modifying agents but also with biologics.

Keywords

Chloroquine Hydroxychloroquine Lupus Rheumatoid arthritis Cytokine Lysosomotropic activity Inflammasome Toll-like receptors Lupus Sjøgren’s syndrome Dermatological Chronic inflammation 

Notes

Conflict of interest

The authors declare no financial interest or support from commercial organizations marketing antimalarials in preparing this review. This was entirely author-initiated research for publication.

References

  1. Abdel-Hamid H, Oddis CV, Lacomis D (2008) Severe hydroxychloroquine myopathy. Muscle Nerve 38:1206–1210PubMedCrossRefGoogle Scholar
  2. Abou-Raya S et al. (2014) Efficacy of hydroxychloroquine in the treatment of symptomatic knee osteoarthritis in older adults: a randomized placebo-controlled trial. Ann Rheum Dis 73:756–757Google Scholar
  3. Acha-Orbea H, Groscurth P, Lang R, Stitz J, Hengartner H (1983) Characterization of cloned cytotoxic lymphocytes with NK-like activity. J Immunol 130:2952–2959PubMedGoogle Scholar
  4. Achuthan S, Ahluwalia J, Shafig N, Pareek A, Chandurkar N, Malhotra S (2015) Hydroxychloroquine’s efficacy as an antiplatelet agent study in healthy volunteers: a proof of concept study. J Cardiovasc Pharmacol Ther 20:174–180PubMedCrossRefGoogle Scholar
  5. Ackerman NR, Jubb S, Marlowe SL (1981) Effects of various anti-inflammatory and anti-rheumatic agents on the synthesis, secretion and activity of a cartilage proteoglycan-degrading enzyme and other macrophage enzymes. Biochem Pharmacol 30:2147–2155PubMedCrossRefGoogle Scholar
  6. Adams EM, Yocum DE, Bell CL (1983) Hydroxychloroquine in the treatment of rheumatoid arthritis. Am J Med 75:321–326PubMedCrossRefGoogle Scholar
  7. Adedoyin A, Frye RF, Mauro K, Branch RA (1998) Chloroquine modulation of specific metabolizing enzymes activities: investigation with selective five drug cocktail. Br J Clin Pharmacol 46:215–219PubMedCentralPubMedCrossRefGoogle Scholar
  8. Aderounmu AF, Fleckstein L (1983) Pharmacokinetics of chloroquine diphosphate in the dog. J Pharmacol Exp Ther 1983(223):633–639Google Scholar
  9. Adeyemi EO, Chadwick VS, Hodgson HJ (1990) The effect of some anti-inflammatory agents on elastase release from neutrophils in vitro. J Pharm Pharmacol 42:487–490PubMedCrossRefGoogle Scholar
  10. Adjepon-Yamoah KK, Woolhouse NM, Prescott LF (1986) The effect of chloroquine on paracetamol disposition and kinetics. Br J Clin Pharmacol 21:322–324PubMedCentralPubMedCrossRefGoogle Scholar
  11. Akintonwa A, Gbajumo SA, Mabadeje AF (1988) Placental and milk transfer of chloroquine in humans. Ther Drug Monit 10:147–149PubMedCrossRefGoogle Scholar
  12. Ali HM (1985) Reduced ampicillin bioavailability following oral coadministration with chloroquine. J Antimicrob Chemother 15:781–784PubMedCrossRefGoogle Scholar
  13. Alisky JM, Chertkova EL, Iczkowski KA (2006) Drug interactions and pharmacogenetic reactions are the basis for chloroquine and mefloquine-induced psychosis. Med Hypotheses 67:1090–1094PubMedCrossRefGoogle Scholar
  14. Andreas K, Haupl T, Lubke C, Ringe J, Morawietz L, Wachtel A, Sittinger M, Kaps C (2009) Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther 11:R15PubMedCentralPubMedCrossRefGoogle Scholar
  15. Antoine JC, Goud B, Jouanne C, Maurice M, Feldmann G (1985) Ammonium chloride, methylamine and chloroquine reversibly inhibit antibody secretion by plasma cells. Cell Biol 55:41–54CrossRefGoogle Scholar
  16. Arner EC, Darnell LR, Pratta MA, Newton RC, Ackerman NR, Galbraith W (1987) Effect of antiinflammatory drugs on human interleukin-1-induced cartilage degradation. Agents Actions 21:334–336PubMedCrossRefGoogle Scholar
  17. Ashraf T, Jiang W, Hogue MT, Henderson J, Wu C, Bendayan R (2014) Role of anti-inflammatory compounds in human immunodeficiency virus-1 glycoprotein120-mediated brain inflammation. J Neuroinflamm 11:11. doi: 10.1186/1742-2094-11 CrossRefGoogle Scholar
  18. Ausiello CM, Barbieri P, Spagnoli GC, Ciompi ML, Casciani CU (1986) In vivo effects of chloroquine treatment on spontaneous and interferon-induced natural killer activities in rheumatoid arthritis patients. Clin Exp Rheumatol 4:255–259PubMedGoogle Scholar
  19. Authi KS, Traynor JR (1982) Stimulation of polymorphonuclear leucocyte phospholipase A2 activity by chloroquine and mepacrine. J Pharm Pharmacol 34:736–738PubMedCrossRefGoogle Scholar
  20. Avina-Zubieta JA, Galindo-Rodriguez G, Newman S, Suarez-Almazor ME, Russell AS (1998) Long-term effectiveness of antimalarial drugs in rheumatic diseases. Ann Rheum Dis 57:582–587PubMedCentralPubMedCrossRefGoogle Scholar
  21. Bannwarth B, Pehourcq F, Schaeverbeke T, Dehais J (1996) Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet 30:194–210PubMedCrossRefGoogle Scholar
  22. Barbieri P, Ausiello C, Spagnoli GC, Qintieri F, Ciompi ML (1985) Chloroquine treatment induces decrease of spontaneous and interferon enhanced NK activity in rheumatoid arthritis. Int J Immunother 1:211–214Google Scholar
  23. Bartholomew JS, Lowther DA (1987) Receptor-mediated binding of leukocyte elastase by chondrocytes. Arthritis Rheum 30:431–438PubMedCrossRefGoogle Scholar
  24. Baum J (1983) Treatment of juvenile arthritis. Am Fam Physician 27:133–139PubMedGoogle Scholar
  25. Bellamy N, Brooks PM (1986) Current practice in antimalarial drug prescribing in rheumatoid arthritis. J Rheumatol 13:551–555PubMedGoogle Scholar
  26. Ben-Chetrit E, Fischel R, Hinz B, Levy M (2005) The effects of cochicine and hydroxychloroquine on the cyclo-oxygenases COX-1 and COX-1. Rheumatol Int 25:332–335PubMedCrossRefGoogle Scholar
  27. Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y (2012) Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol 42:145–153PubMedCrossRefGoogle Scholar
  28. Bergqvist Y, Hed C, Funding L, Suther A (1985) Determination of chloroquine and its metabolites in urine: a field method based on ion-pair extraction. Bull WHO 63:893–898PubMedCentralPubMedGoogle Scholar
  29. Biasi D, Caramaschi P, Carletto A, Pacor ML, Bambara LM (2000) Combination therapy with hydroxychloroquine, gold sodium thiomalate and methotrexate in early rheumatoid arthritis. An open 3-year study. Clin Rheumatol 19:505–507PubMedCrossRefGoogle Scholar
  30. Blackham A, Radziwonik H, Shaw IH (1975) The Arthus reaction in guinea-pig knee joints. A test for anti-inflammatory drugs. Agents Actions 5:519–527PubMedCrossRefGoogle Scholar
  31. Boelaert JR, Piette J, Sperber K (2001a) The potential place of chloroquine in the treatment of HIV-1-infected patients. J Clin Virol 20:137–140PubMedCrossRefGoogle Scholar
  32. Boelaert JR, Yaro S, Augustijns P, Meda N, Schneider YJ, Schols D, Mols R, De Laere EA, Van de Perre P (2001b) Chloroquine accumulates in breast-milk cells: potential impact in the prophylaxis of postnatal mother-to-child transmission of HIV-1. AIDS 15:2205–2207PubMedCrossRefGoogle Scholar
  33. Bonfante H et al. (2008) Assessment of the use of hydroxychloroquine on knees’ osteoarthritis treatment. Rev Bras Rheumatol 48:208–212Google Scholar
  34. Borden MB, Parke AL (2001) Antimalarial drugs in systemic lupus erythematosus: use in pregnancy. Drug Saf 24:1055–1063PubMedCrossRefGoogle Scholar
  35. Boström H, Moretti A, Whitehouse M (1963) Studies of the biochemistry of heart valves. On the biosynthesis of mucopolysaccharides in bovine heart valves. Biochem Biophys Acta 74:213–221PubMedCrossRefGoogle Scholar
  36. Boström H, Bernsten K, Whitehouse MW (1964) Biochemical properties of anti-inflammatory drugs-II. Some effects on sulphate-35S metabolism in vivo. Biochem Pharmacol 13:413–420CrossRefGoogle Scholar
  37. Brandriss MW, Schlesinger JJ (1984) Antibody-mediated infection of P388D1 cells with 17D yellow fever virus: effects of chloroquine and cytochalasin B. J Gen Virol 65:791–794PubMedCrossRefGoogle Scholar
  38. Brennan FR, Negroiu G, Buzás EI, Fülöp C, Holló K, Mikecz K, Glant TT (1995) Presentation of cartilage proteoglycan to a T cell hybridoma derived from a mouse with proteoglycan-induced arthritis. Clin Exp Immunol 100:104–110PubMedCentralPubMedCrossRefGoogle Scholar
  39. Bretano F, Schorr O, Gay RE, Gay S, Kyburz D (2005) RNA released from necrotic synovial fluid in RA—evidence of an inhibitory effect on toll-like receptor signalling. Arthritis Rheum 52:2656–2665CrossRefGoogle Scholar
  40. British National Formulary 57 (2009) BMJ Group and RPS Publishing, London, p 566Google Scholar
  41. Brocks DR, Mehvar R (2003) Stereoselectivity in the pharmacodynamics and pharmacokinetics of the chiral antimalarial drugs. Clin Pharmacokinet 42:1359–1382PubMedCrossRefGoogle Scholar
  42. Brocks DR, Pasutto FM, Jamali F (1992) Analytical and semi-preparative high-performance liquid chromatographic separation and assay of hydroxychloroquine enantiomers. J Chromatogr 581:83–92PubMedCrossRefGoogle Scholar
  43. Brown ND, Poon BT, Chulay JD (1985) Chloroquine metabolism in man: urinary excretion of 7-chloro-4-hydroxy-quinoline and 7-chloro-4-aminoquinoline metabolites. J Chromatogr 345:209–214PubMedCrossRefGoogle Scholar
  44. Brucato A, Frassi M, Franceschini F, Cimaz R, Faden D, Pisoni MP, Muscarà M, Vignati G, Stramba-Badiale M, Catelli L, Lojacono A, Cavazzana I, Ghirardello A, Vescovi F, Gambari PF, Doria A, Meroni PL, Tincani A (2001) Risk of congenital complete heart block in newborns of mothers with anti-Ro/SSA antibodies detected by counter-immunoelectrophoresis: a prospective study of 100 women. Arthritis Rheum 44:1832–1835PubMedCrossRefGoogle Scholar
  45. Bryant LR et al. (1995) Hydroxychloroquine in the treatment of erosive osteoarthritis. J Rheumatol 22:1527–1531PubMedGoogle Scholar
  46. Bygbjerg IC, Theander TG, Andersen BJ, Flachs H, Jepsen S, Larsen PB (1986) In vitro effect of chloroquine, mefloquine and quinine on human lymphocyte proliferative responses to malaria antigens and other antigens/mitogens. Trop Med Parasit 37:245–247Google Scholar
  47. Bygbjerg IC, Svenson M, Theander TG, Bendtzen K (1987) Effect of antimalarial drugs on stimulation and interleukin 2 production of human lymphocytes. Int J Immunopharmacol 9:513–519PubMedCrossRefGoogle Scholar
  48. Cameron MC, Word AP, Dominguez A (2014) Hydroxychloroquine-induced fatal toxic epidermal necrolysis complicated by angioinvasive rhizopus. Dermatol Online J 20 (pii: 13030/qt1q90q0h5) Google Scholar
  49. Canadian Rheumatology Association (2000) Canadian Consensus Conference on hydroxychloroquine. J Rheumatol 27:2919–2921Google Scholar
  50. Cankaya H, Alpöz E, Karabulut G, Güneri P, Boyacioglu H, Kabasakal Y (2010) Effects of hydroxychloroquine on salivary flow rates and oral complaints of Sjögren patients: a prospective sample study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:62–67PubMedCrossRefGoogle Scholar
  51. Cansu DU, Korkmaz C (2008) Hypoglycaemia induced by hydroxychloroquine in a non-diabetic patient treated for RA. Rheumatology (Oxford) 47:378–379CrossRefGoogle Scholar
  52. Carmichael SJ, Beal J, Day RO, Tett SE (2002) Combination therapy with methotrexate and hydroxychloroquine for rheumatoid arthritis increases exposure to methotrexate. J Rheumatol 29:2077–2083PubMedGoogle Scholar
  53. Carmichael SJ, Charles B, Tett SE (2003) Population pharmacokinetics of hydroxychloroquine in patients with rheumatoid arthritis. Ther Drug Monit 25:671–681PubMedCrossRefGoogle Scholar
  54. Carmichael SJ, Day RO, Tett SE (2013) A cross-ectional survey of hydroxychloroquine concentrations and effects in people with systemic lupus erythematosus. Intern Med J 43:547–553PubMedCrossRefGoogle Scholar
  55. Cecchi E, Porzio F (1964) Affinité de l-hydroxychloroquine pour les tissues articulaires. Rhumatologie 16:399–400PubMedGoogle Scholar
  56. Cervera R, Khamashta MA, Hughes GR (2009) The Euro-lupus project: epidemiology of systemic lupus erythematosus in Europe. Lupus 18:869–874PubMedCrossRefGoogle Scholar
  57. Chafin CB, Regna NL, Hammanod SE, Reilly CM (2013) Cellular and urinary microRNA alterations in NZB/W mice with hydroxychloroquine and prednisone treatment. Int Immunopharmacol 17:894–906PubMedCrossRefGoogle Scholar
  58. Chiang G, Sassaroli M, Louie M, Chen H, Stecher VJ, Sperber K (1996) Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine. Clin Ther 18:1080–1092PubMedCrossRefGoogle Scholar
  59. Choi HK, Seeger JD, Kuntz KM (2000) A cost-effectiveness analysis of treatment options for patients with methotrexate-resistant rheumatoid arthritis. Arthritis Rheum 43:2316–2327PubMedCrossRefGoogle Scholar
  60. Churchill FC, Mount DL, Schwartz IK (1983) Determination of chloroquine and its major metabolite in blood using perfluoroacylation followed by fused-silica capillary gas chromatography with nitrogen-sensitive detection. J Chromatogr 274:111–120PubMedCrossRefGoogle Scholar
  61. Clarke AK (1998) Antimalarial drugs in the treatment of rheumatological diseases. Br J Rheumatol 37:580PubMedCrossRefGoogle Scholar
  62. Clarke AK, Vernon-Roberts B, Currey HLF (1975) Assessment of anti-inflammatory drugs in the rat using subcutaneous implants of polyurethane foam impregnated with dead tubercule bacilli. Ann Rheum Dis 34:326–331PubMedCentralPubMedCrossRefGoogle Scholar
  63. Clegg DO, Dietz F, Duffy J, Willkens RF, Hurd E, Germain BF, Wall B, Wallace DJ, Bell CL, Sleckman J (1997) Safety and efficacy of hydroxychloroquine as maintenance therapy for rheumatoid arthritis after combination therapy with methotrexate and hydroxychloroquine. J Rheumatol 24:1896–1902PubMedGoogle Scholar
  64. Colombo C, Butler M, Hickman L, Selwyn M, Chart J, Steinetz B (1983) A new model of osteoarthritis in rabbits. II. Evaluation of anti-osteoarthritic effects of selected antirheumatic drugs administered systemically. Arthritis Rheum 26:1132–1139PubMedCrossRefGoogle Scholar
  65. Combe B, Guttierrez M, Anaya JM, Sany J (1993) Possible efficacy of hydroxychloroquine on accelerated nodulosis during methotrexate therapy for rheumatoid arthritis. J Rheumatol 20:755–756PubMedGoogle Scholar
  66. Conaghan PG, Lehmann T, Brooks P (1997) Disease-modifying antirheumatic drugs. Curr Opin Rheumatol 9:183–190PubMedCrossRefGoogle Scholar
  67. Connolly KM, Stecher VJ, Danis E, Pruden DJ, LaBrie T (1988) Alteration of interleukin-1 activity and the acute phase response in adjuvant arthritic rats treated with disease modifying antirheumatic drugs. Agents Actions 25:94–105PubMedCrossRefGoogle Scholar
  68. Cook JA, Randinitis EJ, Bramson CR, Wesche DL (2006) Lack of a pharmacokinetic interaction between azithromycin and chloroquine. Am J Trop Med Hyg 74:407–412PubMedGoogle Scholar
  69. Costedoat-Chalumeau N, Amoura Z, Aymard G, Le TH, Wechsler B, Vauthier D, Dermer ME, Darbois Y, Piette JC (2002) Evidence of transplacental passage of hydroxychloroquine in humans. Arthritis Rheum 46:1123–1124PubMedCrossRefGoogle Scholar
  70. Costedoat-Chalumeau N, Amoura Z, Duhaut P, Huong DL, Sebbough D, Wechsler B, Vauthier D, Denjoy I, Lupoglazoff JM, Piette JC (2003) Safety of hydroxychloroquine in pregnant patients with connective tissue diseases: a study of one hundred thirty-three cases compared with a control group. Arthritis Rheum 48:3207–3211PubMedCrossRefGoogle Scholar
  71. Cowey FK, Whitehouse MW (1966) Biochemical properties of anti-inflammatory drugs. VII. Inhibition of proteolytic enzymes in connective tissue by chloroquine (resorchin) and related antimalarial antirheumatic drugs. Biochem Pharmacol 15:1071–1084PubMedCrossRefGoogle Scholar
  72. Cox A, Duff GW (1996) Cytokines as genetic modifying factors in immune and inflammatory diseases. J Pediatric Endocrinol Metab 9:129–132CrossRefGoogle Scholar
  73. Craig JC, Bhargava HN, Everhart ET, LaBelle B, Ohnsorge U, Webster RV (1988) Absolute configuration of the enantiomers of 7-chloro-4-[[4-diethylamino)-1-methylbutyl]amino]quinoline (chloroquine). J Org Chem 53:1167–1170CrossRefGoogle Scholar
  74. Crossley MJ, Spowage M, Hunneyball IM (1987) Studies on the effects of pharmacological agents on antigen-induced arthritis in BALB/c mice. Drugs Exp Clin Res 13:273–277PubMedGoogle Scholar
  75. Csuka M, Carrera GF, McCarty DJ (1986) Treatment of intractable rheumatoid arthritis with combined cyclophosphamide, azathioprine, and hydroxychloroquine. A follow-up study. JAMA 255:2315–2319PubMedCrossRefGoogle Scholar
  76. Cutler DJ (1993) Possible mechanisms of action of antimalarials in rheumatic disease. Agents Actions Suppl 44:139–143PubMedGoogle Scholar
  77. Cutler DJ, MacIntyre AC, Tett SE (1988) Pharmacokinetics and cellular uptake of 4-aminoquinoline antimalarials. Agents Actions Suppl 24:142–157PubMedGoogle Scholar
  78. Das SK, Pareek A, Mathur DS, Wanchu A, Srivastava R, Agarwal GG, Chauhan RS (2002) Efficacy and safety of hydroxychloroquine sulphate in rheumatoid arthritis: a randomized, double-blind, placebo controlled clinical trial—an Indian experience. Curr Med Res Opin 23:2227–2234CrossRefGoogle Scholar
  79. Das SK, Pareek A, Mathur DS, Wanchu A, Srivastava R, Agarwal GG, Chauhan RS (2007) Efficacy and safety of hydroxychloroquine sulphate in rheumatoid arthritis: a randomized, double-blind, placebo controlled clinical trial–an Indian experience. Curr Med Res Opin 23:2227–2234PubMedCrossRefGoogle Scholar
  80. Davila L, Ranganathan P (2011) Pharmacogenetics: implications for therapy in rheumatic diseases. Nat Rev Rheumatol 7:537–550PubMedCrossRefGoogle Scholar
  81. Davis MJ, Woolf AD (1996) Role of antimalarials in rheumatoid arthritis–the British experience. Lupus 5(Suppl 1):S37–S40PubMedCrossRefGoogle Scholar
  82. Dawson LJ, Caulfield VL, Stanbury JB, Field AE, Christmas SE, Smith PM (2005) Hydroxychloroquine therapy in patients with primary Sjögren’s syndrome may improve salivary gland hypofunction by inhibition of glandular cholinesterase. Rheumatology 44:449–455PubMedCrossRefGoogle Scholar
  83. Detert J, Klaus P, Listing J, Höhne-Zimmer V, Braun T, Wassenberg S, Rau R, Buttgereit F, Burmester GR (2014) Hydroxychloroquine in patients with inflammatory and erosive osteoarthritis of the hands (OA TREAT): study protocol for a randomized controlled trial. Trials 15:412. doi: 10.1186/1745-6215-15-412 PubMedCentralPubMedCrossRefGoogle Scholar
  84. De Duve C (1965) The separation and characterization of subcellular particles. Harvey Lect 59:49–87PubMedGoogle Scholar
  85. de Oliveira AR, Cardoso CD, Bonato PS (2007) Stereoselective determination of hydroxychloroquine and its metabolites in human urine by liquid-phase microextraction and CE. Electrophoresis 28:1081–1091PubMedCrossRefGoogle Scholar
  86. Derksen RH, de Groot PG (2010) Towards evidence-based treatment of thrombotic antiphospholipid syndrome. Lupus 19:470–474PubMedCrossRefGoogle Scholar
  87. Descloux E, Durieu I, Cochat P, Vital-Durand D, Ninet J, Fabien N, Cimaz R (2009) Influence of age at disease onset in the outcome of paediatric systemic lupus erythematosus. Rheumatology 48:779–784PubMedCrossRefGoogle Scholar
  88. Dixon JS, Pickup ME, Bird HA, Lee MR (1981) Biochemical indices of response to hydroxychloroquine and sodium aurothiomalate in rheumatoid arthritis. Ann Rheum Dis 40:480–488PubMedCentralPubMedCrossRefGoogle Scholar
  89. Dubois EL (1967) Management and prognosis of systemic lupus erythematosus. Bull Rheum Dis 18:477–482PubMedGoogle Scholar
  90. Dubois EL (1978) Antimalarials in the management of discoid and systemic lupus erythematosus. Semin Arthritis Rheum 8:33–51PubMedCrossRefGoogle Scholar
  91. Ducharme J, Farinotti R (1996) Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet 31:257–274PubMedCrossRefGoogle Scholar
  92. Ducharme J, Fieger H, Ducharme MP, Khalil SK, Wainer IW (1995) Enantioselective disposition of hydroxychloroquine after a single oral dose of the racemate to healthy subjects. Br J Clin Pharmacol 40:127–133PubMedCentralPubMedCrossRefGoogle Scholar
  93. Duve De, Wattiaux R, Wibo M (1962) Effects of fat-soluble compounds on lysosomes in vitro. Biochem Pharmacol 9:97–116CrossRefGoogle Scholar
  94. Easterbrook M (1990) Is corneal disposition of anti-malarials any indication of retinal toxicity? Can J Opthal 25:249–251Google Scholar
  95. Easterbrook M (2002) Screening for antimalarial toxicity: current concepts. Can J Ophthalmol. 37:325–358 (331–334) PubMedCrossRefGoogle Scholar
  96. Edmead CE, Patel YI, Wilson A, Boulougouris G, Hall ND, Ward SG, Sansom DM (1996) Induction of activator protein (AP)-1 and nuclear factor-κB by CD28 stimulation involves both phosphoinositol-3-kinase and acidic sphingomyelinase signals. J Immunol 157:3290–3297PubMedGoogle Scholar
  97. Edstein MD, Veenendaal JR, Newman K, Hyslop R (1986) Excretion of chloroquine, dapsone and pyrimethamine in human milk. Br J Clin Pharmacol 22:733–735PubMedCentralPubMedCrossRefGoogle Scholar
  98. Edwards MH, Pierangeli S, Liu XW, Barker JH, Anderson G, Harris EN (1997) Hydroxychloroquine reverses thrombogenic properties of antiphospholipid antibodies in mice. Circulation 96:4380–4384PubMedCrossRefGoogle Scholar
  99. Eklund KK, Leirisalo-Repo M, Ranta P, Mäki T, Kautiainen H, Hannonen P, Korpela M, Hakala M, Järvinen P, Möttönen T (2007) Serum IL-1beta levels are associated with the presence of erosions in recent onset rheumatoid arthritis. Clin Exp Rheumatol 25:684–689PubMedGoogle Scholar
  100. Emami J, Pasutto FM, Jamali F (1998) Effect of experimental diabetes mellitus and arthritis on the pharmacokinetics of hydroxychloroquine enantiomers in rats. Pharm Res 15:897–903PubMedCrossRefGoogle Scholar
  101. Emami J, Gerstein HC, Pasutto FM, Jamali F (1999a) Insulin-sparing effect of hydroxychloroquine in diabetic rats is concentration dependent. Can J Physiol Pharmacol 77:118–123PubMedCrossRefGoogle Scholar
  102. Emami J, Pasutto FM, Mercer JR, Jamali F (1999b) Inhibition of insulin metabolism by hydroxychloroquine and its enantiomers in cytosolic fraction of liver homogenates from healthy and diabetic rats. Life Sci 64:325–335PubMedCrossRefGoogle Scholar
  103. Estrada C, Gómez C, Martin C, Moncada S, González C (1992) Nitric oxide mediates tumor necrosis factor-α cytotoxicity in endothelial cells. Biochem Biophys Res Commun 186:475–482PubMedCrossRefGoogle Scholar
  104. Etherington DJ, Pugh D, Silver IA (1981) Collagen degradation in an experimental inflammatory lesion: studies on the role of the macrophage. Acta Biol Med Ger 40:1625–1636PubMedGoogle Scholar
  105. Ette EI, Brorm-Awala EA, Essien EE (1987a) Effect of ranitidine on chloroquine disposition. Drug Intell Clin Pharm 21:732–734PubMedGoogle Scholar
  106. Ette EI, Essien EE, Ogonor JI, Brown-Awala EA (1987b) Chloroquine in human milk. J Clin Pharmacol 27:499–502PubMedCrossRefGoogle Scholar
  107. Ette EI, Brown-Awala EA, Essien EE (1987c) Chloroquine elimination in humans: effect of low-dose cimetidine. J Clin Pharmacol 27:813–816PubMedCrossRefGoogle Scholar
  108. Evans D, Williamson WRN (1987) Chemistry of clinically active anti-inflammatory compounds. In: Williamson WRN (ed) Anti-inflammatory compounds. Marcel Dekker, New York, pp 193–302Google Scholar
  109. Famaey JP, Fontaine J (1980) Prevention by chloroquine of hexosamine cartilage depletion by E-prostaglandins. Arthritis Rheum 23:780–781PubMedCrossRefGoogle Scholar
  110. Farrante A, Rowan-Kelly B, Seow WK, Thong YH (1986) Depression of human polymorphonuclear leucocyte function by anti-malarial drugs. Immunology 58:125–130Google Scholar
  111. Finbloom DS, Silver K, Newsome DA, Gunkel R (1985) Comparison of hydroxychloroquine and chloroquine use and the development of retinal toxicity. J Rheumatol 12:692–694PubMedGoogle Scholar
  112. Fosdyke DR (1975) Evidence for a relationship between chloroquine and complement from studies with lymphocyte mitogens: possible implications for the mechanism of chloroquine in disease. Can J Microbiol 21:1581–1586CrossRefGoogle Scholar
  113. Fox RI (1993) Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum 23:82–91PubMedCrossRefGoogle Scholar
  114. Fox R (1996) Anti-malarial drugs: possible mechanisms of action in autoimmune disease and prospects for drug development. Lupus 5(Suppl 1):S4–S10PubMedCrossRefGoogle Scholar
  115. Fox RI, Dixon R, Guarrasi V, Krubel S (1996) Treatment of primary Sjogren’s syndrome with hydroxychloroquine: a retrospective, open-label study. Lupus 5(Suppl 1):S31–S36PubMedCrossRefGoogle Scholar
  116. French JK, Hurst NP, O’Donnell ML, Betts WH (1987) Uptake of chloroquine and hydroxychloroquine by human blood leucocytes in vitro: relation to cellular concentrations during antirheumatic therapy. Ann Rheum Dis 46:42–45PubMedCentralPubMedCrossRefGoogle Scholar
  117. Fryauff DJ, Richards AL, Baird JK, Richie TL, Mouzin E, Tjitra E, Sutamihardja MA, Ratiwayanto S, Hadiputranto H, Larasati RP, Pudjoprawoto N, Subianto B, Hoffman SL (1996) Lymphocyte proliferative response and subset profiles during extended periods of chloroquine or primaquine prophylaxis. Antimicrob Agents Chemother 40:2737–2742PubMedCentralPubMedGoogle Scholar
  118. Fu S, Björkman A, Wåhlin B, Ofori-Adjei D, Ericsson O, Sjöqvist F (1986) In vitro activity of chloroquine, the two enantiomers of chloroquine, desethylchloroquine and pyronaridine against Plasmodium falciparum. Br J Clin Pharmacol 22:93–96PubMedCentralPubMedGoogle Scholar
  119. Fulkerson JP, Ladenbauer-Bellis IM, Chrisman OD (1979) In vitro hexosamine depletion of intact articular cartilage by E-prostaglandins: prevention by chloroquine. Arthritis Rheum 22:1117–1121PubMedCrossRefGoogle Scholar
  120. Furst DE (1993) Optimizing combination chemotherapy for rheumatoid arthritis. Ann N Y Acad Sci 696:285–291PubMedCrossRefGoogle Scholar
  121. Furst DE (1996) Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 5(Suppl 1):S11–S15PubMedCrossRefGoogle Scholar
  122. Furst DE, Lindsley H, Baethge B, Botstein GR, Caldwell J, Dietz F, Ettlinger R, Golden HE, McLaughlin GE, Moreland LW, Roberts WN, Rooney TW, Rothschild B, Sack M, Sebba AI, Weisman M, Welch KE, Yocum D (1999) Dose-loading with hydroxychloroquine improves the rate of response in early, active rheumatoid arthritis: a randomized, double-blind six-week trial with eighteen-week extension. Arthritis Rheum 42:357–365PubMedCrossRefGoogle Scholar
  123. Gallus AS (1979) Antiplatelet drugs: clinical pharmacology and therapeutic use. Drugs 18:439–477PubMedCrossRefGoogle Scholar
  124. Geamănu-Pancă A, Popa-Cheracheanu A, Marinescu B, Geamănu CD, Voinea LM (2014) Retinal toxicity associated with chronic exposure to hydroxychloroquine and its ocular screening. Review. J Med Life 7:322–326PubMedCentralPubMedGoogle Scholar
  125. Gendrel D, Verdier F, Richard-Lenoble D, Nardou M (1990) Interaction of cholestyramine and chloroquine. Arch Fr Pediatr 47:387–388PubMedGoogle Scholar
  126. Gerstein HC, Thorpe KE, Taylor DW, Haynes RB (2002) The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas—a randomized trial. Diabetes Res Clin Pract 55:209–219PubMedCrossRefGoogle Scholar
  127. Gil JP, Gil Berglund E (2007) CYP2C8 and antimalarial drug efficacy. Pharmacogenomics 8:187–198PubMedCrossRefGoogle Scholar
  128. Ginsburg H, Geary TG (1987) Current concepts and new ideas on the mechanism of action of quinoline-containing antimalarials. Biochem Pharmacol 36:1567–1576PubMedCrossRefGoogle Scholar
  129. Girart MV, Fuertes MB, Domaica CI, Rossi LE, Zwirner NW (2007) Engagement of TLR3, TLR7, and NKG2D regulate IFN-gamma secretion but not NKG2D-mediated cytotoxicity by human NK cells stimulated with suboptimal doses of IL-12. J Immunol 179:3472–3479PubMedCrossRefGoogle Scholar
  130. Gladman DD, Blake R, Brubacher B, Farewell VT (1992) Chloroquine therapy in psoriatic arthritis. J Rheumatol 19:1724–1726PubMedGoogle Scholar
  131. Glaumann H, Ahlberg J, Berkenstam A (1985) Rapid isolation of rat liver secondary lysosomes—autophagic vacuoles—following chloroquine administration. Exp Cell Res 163:151–158CrossRefGoogle Scholar
  132. Goekoop YP, Allaart CF, Breedveld FC, Dijkmans BA (2001) Combination therapy in rheumatoid arthritis. Curr Opin Rheumatol 13:177–183PubMedCrossRefGoogle Scholar
  133. Goldman FD, Gilman AL, Hollenback C, Kato RM, Premack BA, Rawlings DJ (2000) Hydroxychloroquine inhibits calcium signals in T cells: a new mechanism to explain its immunomodulatory properties. Blood 95:3460–3466PubMedGoogle Scholar
  134. Gordon D, Lewis GP (1984) Effects of piroxicam on mononuclear cells. Comparison with other antiarthritic drugs. Inflammation 8(Suppl):S87–S102PubMedCrossRefGoogle Scholar
  135. Gottenberg JE, Ravaud P, Puéchal X, Le Guern V, Sibilia J, Goeb V, Larroche C, Dubost JJ, Rist S, Saraux A, Devauchelle-Pensec V, Morel J, Hayem G, Hatron P, Perdriger A, Sene D, Zarnitsky C, Batouche D, Furlan V, Benessiano J, Perrodeau E, Seror R, Mariette X (2014) Effects of hydroxychloroquine on symptomatic improvement in primary Sjögren syndrome: the JOQUER randomized clinical trial. JAMA 312:249–258PubMedCrossRefGoogle Scholar
  136. Gräbner R, Meerbach W (1983) Imipramine and chloroquine induce alterations in phospholipid content of rat lung. Exp Path 24:253–259CrossRefGoogle Scholar
  137. Grierson DJ (1997) Hydroxychloroquine and visual screening in a rheumatology outpatient clinic. Ann Rheum Dis 56:188–190PubMedCentralPubMedCrossRefGoogle Scholar
  138. Gupta JD, Gruca M, Ablett W (1979) Effect of other drugs and chemicals on the degradation of aspirin in vitro: possible extrapolation to in vivo metabolism of aspirin. Eur J Drug Metab Pharmacokinet 4:103–108PubMedCrossRefGoogle Scholar
  139. Haberkorn A, Kraft HP, Blaschke G (1979) Antimalarial activity of the optical isomers of chloroquine diphosphate. Tropenmed Parasitol 30:308–312PubMedGoogle Scholar
  140. Hage MP, Al-Badri MR, Azar ST (2014) A favourable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role. Ther Adv Endocronol Metab 5:77–85CrossRefGoogle Scholar
  141. Hanna B, Holdeman NR, Tang RA, Schiffman JS (2008) Retinal toxicity secondary to Plaquenil therapy. Optometry 79:90–94PubMedCrossRefGoogle Scholar
  142. Hedin U, Thyberg J (1985) Receptor-mediated endocytosis of immunoglobulin-coated colloidal gold particles in cultured mouse peritoneal macrophages. Chloroquine and monensin inhibit transfer of the ligand from endocytic vesicles to lysosomes. Eur J Cell Biology 39:130–135Google Scholar
  143. Hereng T, Lambert M, Hachulla E, Samor M, Dubucquoi S, Caron C, Launay D, Morell-Dubois S, Queyrel V, Hatron PY (2008) Influence of aspirin on the clinical outcomes of 103 anti-phospholipid antibodies-positive patients. Lupus 17:11–15PubMedCrossRefGoogle Scholar
  144. Hobbs HE, Sorsby A, Freeman A (1959) Retinopathy following chloroquine therapy. Lancet 2:478–480PubMedCrossRefGoogle Scholar
  145. Homewood CA, Warhurst DC, Peters W, Baggaly VC (1972) Lysosomes, pH and the anti-malarial action of chloroquine. Nature 235:50–52PubMedCrossRefGoogle Scholar
  146. Hostetler KY, Richman DD (1982) Studies on the mechanism of phospholipid storage induced by amantadine and chloroquine in Madin Darby canine kidney cells. Biochem Pharmacol 31:3795–3799PubMedCrossRefGoogle Scholar
  147. Hugosson E, Bjökman A, Troye-Blomberg M (2002) Chloroquine enhances the number of IL-10 producing cells and the expression of B7-2 and ICAM in in vitro-cultured PBMC. Scan J Immunol 55:399–402CrossRefGoogle Scholar
  148. Hunneyball IM, Crossley MJ, Spowage M (1986) Pharmacological studies of antigen-induced arthritis in BALB/c mice. II. The effects of second-line antirheumatic drugs and cytotoxic agents on the histopathological changes. Agents Actions 18:394–400PubMedCrossRefGoogle Scholar
  149. Hurst NP, French JK, Gorjatsschko L, Betts WH (1987) Studies on the mechanism of inhibition of chemotactic tripeptide stimulated human neutrophil polymorphonuclear leucocyte superoxide production by chloroquine and hydroxychloroquine. Ann Rheum Dis 46:750–756PubMedCentralPubMedCrossRefGoogle Scholar
  150. Hurst NP, French JK, Gorjatschko L, Betts WH (1988) Chloroquine and hydroxychloroquine inhibit multiple sites in metabolic pathways leading to neutrophil superoxide release. J Rheumatol 15:23–27PubMedGoogle Scholar
  151. Hurvitz D, Hurschhorn K (1965) Suppression of in vitro lymphocyte responses by chloroquine. New Engl J Med 273:23–26PubMedCrossRefGoogle Scholar
  152. Ignarro LJ (1971) Dissimilar effects of anti-inflammatory drugs on stability of lysosomes from peritoneal and circulating leukocytes and liver. Biochem Pharmacol 20:2861–2870PubMedCrossRefGoogle Scholar
  153. Ignarro LJ (1974) Release of neutral protease and beta-glucuronidase from human neutrophils in the presence of cartilage treated with various immunologic reactants. J Immunol 113:298–308PubMedGoogle Scholar
  154. Ignarro LJ, Colombo C (1972) Enzyme release from guinea-pig polymorphonuclear leucocyte lysosomes inhibited in vitro by anti-inflammatory drugs. Nat New Biol 239:155–157PubMedCrossRefGoogle Scholar
  155. Ilo EC, Orisakwe OE, Ilondu NA, Okwoli N, Brown SA, Elo-Ilo J, Agbasi PU (2006) Effect of chloroquine on the bioavailability of ciprofloxacin in man. J Control Release 116:e109–e110PubMedCrossRefGoogle Scholar
  156. Ilo CE, Ezejiofor NA, Agbakoba N, Brown SA, Maduagwuna CA, Agbasi PU, Orisakwe OE (2008) Effect of chloroquine on the urinary excretion of ciprofloxacin. Am J Ther 15:419–422PubMedCrossRefGoogle Scholar
  157. Iredale J, Fieger H, Wainer IW (1993) Determination of the stereoisomers of hydroxychloroquine and its major metabolites in plasma and urine following a single oral administration of racemic hydroxychloroquine. Semin Arthritis Rheum 23:74–81PubMedCrossRefGoogle Scholar
  158. Izmirly PM, Kim MY, Llanos C, Le PU, Guerra MM, Askanase AD, Salmon JE, Buyon JP (2010) Evaluation of the risk of anti-SSA/Ro-SSB/La antibody-associated cardiac manifestations of neonatal lupus in fetuses of mothers with systemic lupus erythematosus exposed to hydroxychloroquine. Ann Rheum Dis 69:1827–1830PubMedCentralPubMedCrossRefGoogle Scholar
  159. Jang C-H, Choi J-H, Byun M-S, Jue D-M (2006) Chloroquine inhibits production of TNF-α, IL-1β and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology 45:703–710PubMedCrossRefGoogle Scholar
  160. Järvinen K, Vuolteenaho K, Nieminen R, Moilanen T, Knowles RG, Moilanen E (2008) Selective iNOS inhibitor 1400 W enhances anti-catabolic IL-10 and reduces destructive MMP-10 in OA cartilage. Survey of the effects of 1400 W on inflammatory mediators produced by OA cartilage as etected by protein antibody array. Clin Exp Rheumatol 26:275–282PubMedGoogle Scholar
  161. Jarzyna R, Kiersztan A, Lisowa O, Bryła J (2001) The inhibition of gluconeogenesis by chloroquine contributes to its hypoglycaemic action. Eur J Pharmacol 428:381–388PubMedCrossRefGoogle Scholar
  162. Jokar M et al. (2013) The effect of hydroxychloroquine on symptoms of knee osteoarthritis: a double-blind randomized controlled clinical trial. Iran J Med Sci 38(3):221–226PubMedCentralPubMedGoogle Scholar
  163. Jones CJP, Jayson MIV (1984) Chloroquine: its effect on leucocyte auto- and heterophagocytosis. Ann Rheum Dis 43:205–212PubMedCentralPubMedCrossRefGoogle Scholar
  164. Jones CJP, Salisbury RS, Jayson MIV (1984) The presence of abnormal lysosomes in lymphocytes and neutrophils during chloroquine therapy: a quantitative ultrastructural study. Ann Rheum Dis 43:710–715PubMedCentralPubMedCrossRefGoogle Scholar
  165. Jover JA, Leon L, Pato E, Loza E, Rosales Z, Matias MA, Mendez-Fernandez R, Díaz-Valle D, Benitez-Del-Castillo JM, Abasolo L (2012) Long-term use of antimalarial drugs in rheumatic diseases. Clin Exp Rheumatol 30:380–387PubMedGoogle Scholar
  166. Julkunen H, Rokkanen P, Laine H (1976) Chloroquine treatment and bone changes in rheumatoid arthritis. Scand J Rheumatol 5:36–38PubMedGoogle Scholar
  167. Jung H, Bobba R, Su J, Shariati-Sarabi Z, Gladman DD, Urowitz M, Lou W, Fortin PR (2010) The protective effect of antimalarial drugs on thrombovascular events in systemic lupus erythematosus. Arthritis Rheum 62:863–868PubMedCrossRefGoogle Scholar
  168. Kalmanson GM, Guze LB (1963) Effects of hydroxyl-chloroquine on immune mechanisms. Clin Res 11:106Google Scholar
  169. Kamal M, Bassiouni M (1992) Chloroquine inhibits elastase enzyme activity in vitro. Clin Exp Rheumatol 10:99–104Google Scholar
  170. Kamal MA, Jusko WJ (2004) Interactions of prednisolone and other immunosuppressants used in dual treatment of systemic lupus erythematosus in lymphocyte proliferation assays. J Clin Pharmacol 44:1034–1045PubMedCentralPubMedCrossRefGoogle Scholar
  171. Kao KJ (1988) Selective elution of HLA antigens and β2-microglobulin from human platelets by chloroquine diphosphate. Transfusion 28:14–17PubMedCrossRefGoogle Scholar
  172. Kaplan MJ, Lewis EE, Shelden EA, Somers E, Pavlic R, McCune WJ, Richardson BC (2002) The apoptotic ligands, TRAIL, TWEAK, and Fas ligand mediate monocyte death induced by autologous lupus T cells. J Immunol 169:6020–6029PubMedCrossRefGoogle Scholar
  173. Karres I, Kremer JP, Dietl I, Steckholzer U, Jochum M, Ertel W (1998) Chloroquine inhibits roinflammatory cytokine release into human whole blood. Am J Physiol 274:R1058–R1064PubMedGoogle Scholar
  174. Katchamart W, Trudeau J, Phumethum V, Bombardier C (2009) Efficacy and toxicity of methotrexate (MTX) monotherapy versus MTX combination therapy with non-biological disease-modifying antirheumatic drugs in rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis 68:1105–1112PubMedCentralPubMedCrossRefGoogle Scholar
  175. Katz SJ, Russell AS (2011) Re-evaluation of antimalarials in treating rheumatic diseases: re-appreciation and insights into new mechanisms of action. Curr Opin Rheumatol 23:278–281PubMedCrossRefGoogle Scholar
  176. Kelman SM, Sullivan SG, Stern A (1981) Chloroquine- and primaquiine-induced alterations of glucose metabolism in the uninfected red cell. Biochem Pharmacol 30:81–87PubMedCrossRefGoogle Scholar
  177. Kheirkhah A, Amoli FA, Azari AA, Molaei S, Roozbahani M (2012) Conjunctival nodule in rheumatoid arthritis. Int Ophthalmol 32:81–83PubMedCrossRefGoogle Scholar
  178. Khraishi MM, Singh G (1996) The role of anti-malarials in rheumatoid arthritis—the American experience. Lupus 5(Suppl 1):S41–S44PubMedCrossRefGoogle Scholar
  179. Kingsbury SR et al. (2013) Hydroxychloroquine effectiveness in reducing symptoms of hand osteoarthritis (HERO): study protocol for a randomized controlled trial. Trials 14:64PubMedCentralPubMedCrossRefGoogle Scholar
  180. Kim KA, Park JY, Lee JS, Lim S (2003) Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res 26:631–637PubMedCrossRefGoogle Scholar
  181. Klinefelter HF, Achurra A (1973) Effect of gold salts and antimalarials on the rheumatoid factor in rheumatoid arthritis. Scand J Rheumatol 2:177–182PubMedCrossRefGoogle Scholar
  182. Knutson VP, Ronnett GV, Lane MD (1985) The effects of cycloheximide and chloroquine on insulin receptor metabolism. J Biol Chem 260:14180–14188PubMedGoogle Scholar
  183. Köppel C, Tenczer J, Ibe K (1987) Urinary metabolism of chloroquine. Arzneim Forsch 37:208–211Google Scholar
  184. Korpela M, Laasonen L, Hannonen P, Kautiainen H, Leirisalo-Repo M, Hakala M, Paimela L, Blafield H, Puolakka K, Mottonen T, FIN-RACo Trial Group (2004) Retardation of joint damage in patients with early rheumatoid arthritis by initial aggressive treatment with disease-modifying antirheumatic drugs: five-year experience from the FIN-RACo study. Arthritis Rheum 50:2072–2081PubMedCrossRefGoogle Scholar
  185. Krane SM, Amento EP, Goldring SR (1986) Cellular interactions in tissue breakdown in rheumatoid arthritis. Adv Inflamm Res 11:1–12Google Scholar
  186. Kruize AA, Hene RJ, Kallenberg CG, van Bijsterveld OP, van der Heide A, Kater L, Bijlsma JW (1993) Hydroxychloroquine treatment for primary Sjögren’s syndrome: a two year double blind crossover trial. Ann Rheum Dis 52:360–364PubMedCentralPubMedCrossRefGoogle Scholar
  187. Kubo M, Hostettler KY (1980) Mechanism of cationic amphiphilic drug inhibition of purified lysosomal phospholipase A1. Biochemistry 24:6515–6520CrossRefGoogle Scholar
  188. Kull FC Jr, Besterman JM (1990) Drug-induced alterations of tumour necrosis factor-mediated cytotoxicity: discrimination of early versus late stage action. J Cell Biochem 42:1–12PubMedCrossRefGoogle Scholar
  189. Kyburz D, Bretano F, Gay S (2006) Mode of action of hydroxychloroquine in RA—evidence of an inhibitory effect on toll-like signalling. Nature Clin Pract Rheumatol 2:458–459CrossRefGoogle Scholar
  190. Laaksonen AL, Koskiahde V, Juva K (1974) Dosage of antimalarial drugs for children with juvenile rheumatoid arthritis and systemic lupus erythematosus. A clinical study with determination of serum concentrations of chloroquine and hydroxychloroquine. Scand J Rheumatol 3:103–108PubMedCrossRefGoogle Scholar
  191. Lafyatis R, York M, Marshak-Rothstein A (2006) Antimalarial agents: closing the gate on toll-like receptors. Arthritis Rheum 54:3068–3070PubMedCrossRefGoogle Scholar
  192. Lai J-H, Ho L-J, Lu K-C, Chang D-M, Shaio M-F, Han S-H (2001) Western and Chinese antirheumatic drug-induced T cell apoptotic DNA damage uses different caspases cascades and is independent of Fas/Fas ligand interaction. J Immunol 166:6914–6924PubMedCrossRefGoogle Scholar
  193. Landewe RBM, Miltenburg AMM, Verdonk MJA, Verweij CL, Breedveld FC, Daha MR, Dijkmans BAC (1995) Chloroquine inhibits T cell proliferation by interfering with IL-2 production and responsiveness. Clin Exp Immunol 102:144–151PubMedCentralPubMedCrossRefGoogle Scholar
  194. Leoni A (1955) Gli effetti della chlorochina sulla riposte eritematosa al fenolo nei portatori di eritematode cronico. Minerva Derm 30:410–411PubMedGoogle Scholar
  195. Li XQ, Björkman A, Andersson TB, Gustafsson LL, Masimirembwa CM (2003) Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol 59:429–442PubMedCrossRefGoogle Scholar
  196. Lim HS, Im JS, Cho JY, Bae KS, Klein TA, Yeom JS, Kim TS, Choi JS, Jang IJ, Park JW (2009) Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax. Antimicrob Agents Chemother 53:1468–1475PubMedCentralPubMedCrossRefGoogle Scholar
  197. Lipsky PE (1986) Natural killer cell function in rheumatoid arthritis. Clin Exp Rheumatol 4:303–305PubMedGoogle Scholar
  198. Littler TR (1990) Anti-rheumatic drugs. In: Orme M (ed) Anti-rheumatic drugs. Pergamon Press, New York, pp 189–216Google Scholar
  199. Lomater G, Gattinara M, Gerloni V, Zeni S, Fantini F (1994) Combination therapy of juvenile rheumatoid arthritis with hydroxychloroquine-gold-methotrexate: a pilot study. Acta Univ Carol Med (Praha) 40:109–112Google Scholar
  200. Lowe JS, Turner EH (1973) The effect of adjuvant arthritis and drugs on the ability of rat plasma to inhibit the triton X-100 induced lysis of rabbit polymorphonuclear leucocyte granules. Biochem Pharmacol 22:2069–2078PubMedCrossRefGoogle Scholar
  201. Lullmann-Rauch R, Pods R, von Witzendorff B (1996) The antimalarials quinacrine and chloroquine induce weak lysosomal storage of sulphated glycosaminoglycans in cell culture and in vivo. Toxicology 110:27–37PubMedCrossRefGoogle Scholar
  202. MacIntyre AC, Cutler DJ (1986) In vitro binding of chloroquine to rat muscle preparations. J Pharm Sci 75:1068–1070PubMedCrossRefGoogle Scholar
  203. MacIntyre AC, Cutler DJ (1988) Role of lysosomes in hepatic accumulation of chloroquine. J Pharm Sci 77:196–199PubMedCrossRefGoogle Scholar
  204. Mackenzie AH (1970) An appraisal of chloroquine. Arthritis Rheum 13:280–291PubMedCrossRefGoogle Scholar
  205. Mackenzie AH (1983a) Antimalarial drugs for rheumatoid arthritis. Am J Med 75:48–58PubMedCrossRefGoogle Scholar
  206. Mackenzie AH (1983b) Pharmacologic actions of 4-aminoquinoline compounds. Am J Med 75(1A):5–10PubMedCrossRefGoogle Scholar
  207. Mackenzie AH (1983c) Dose refinements in long-term therapy of rheumatoid arthritis with antimalarials. Am J Med 75(1A):40–45PubMedCrossRefGoogle Scholar
  208. Maksymowych W, Russell AS (1987) Antimalarials in rheumatology: efficacy and safety. Semin Arthritis Rheum 16:206–221PubMedCrossRefGoogle Scholar
  209. Malbica JO, Hart LG (1971) Effect of adenosine triphosphate and some anti-inflammatory agents on a purified lysosomal fraction having high acid phosphatase and labile β-glucuronidase activity. Biochem Pharmacol 20:2017–2026PubMedCrossRefGoogle Scholar
  210. Manku MS, Horrobin DF (1976) Chloroquine, quinacrine, procaine, quinidine and clomipramine are prostanglandin agonsist and antagonists. Prostaglandins 12:789–801PubMedCrossRefGoogle Scholar
  211. Marmor MF (2004) Hydroxychloroquine at the recommended dose (<or = 6.5 mg/kg/day) is safe for the retina in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Exp Rheumatol 22:143–144PubMedGoogle Scholar
  212. Marmor MF, Carr RE, Easterbrook M, Farjo AA, Mieler WF, American Academy of Ophthalmology (2002) Recommendations on screening for chloroquine and hydroxychloroquine retinopathy: a report by the American Academy of Ophthalmology. Ophthalmology 109:1377–1382PubMedCrossRefGoogle Scholar
  213. Martínez-Costa L, Victoria Ibañez M, Murcia-Bello C, Epifanio I, Verdejo-Gimeno C, Beltrán-Catalán E, Marco-Ventura P (2013) Use of microperimetry to evaluate hydroxychloroquine and chloroquine retinal toxicity. Can J Ophthalmol 48:400–405PubMedCrossRefGoogle Scholar
  214. Mary CF, Legros J (1987) Experimental study of ocular effects of hydroxychloroquine in the rat: influence of oxidiser status. Br J Clin Pract 41(Suppl 52):46–49Google Scholar
  215. Matsuzawa Y, Hostettler KY (1980) Inhibition of lysosomal phospholipase A and phospholipase C by chloroiquine and 4,4′-bis(diethylaminoethoxy)α, β-diethyldiphenylethane. J Biol Chem 255:5190–5194PubMedGoogle Scholar
  216. McCarty DJ, Carrera GF (1982) Intractable rheumatoid arthritis. Treatment with combined cyclophosphamide, azathioprine, and hydroxychloroquine. J Am Med Assn 248:1718–1723CrossRefGoogle Scholar
  217. McChesney EW (1983) Animal toxicity and pharmacokinetics of hydroxychloroquine sulphate. Am J Med 75(6A):11–18PubMedCrossRefGoogle Scholar
  218. McChesney EW, Fitch CD (1984) 4-Aminoquinolines. In: Peters W, Richards WHG (eds) Antimalarial drugs II. Springer, Berlin, pp 3–60CrossRefGoogle Scholar
  219. McChesney EW, Banks WF Jr, Sullivan DJ (1965) Metabolism of chloroquine and hydroxychloroquine in albino and pigmented rats. Toxicol Appl Pharmacol 7:627–636PubMedCrossRefGoogle Scholar
  220. McChesney EW, Conway WD, Banks WF Jr, Rogers JE, Shekosky JM (1966) Studies on the metabolism of some compounds of the 4-amino-7-chloroquinoline series. J Pharmacol Exp Ther 151:482–493PubMedGoogle Scholar
  221. McChesney EW, Banks WF Jr, Fabian RJ (1967a) Tissue distribution of chloroquine, hydroxychloroquine, and desethylchloroquine. Toxicol Appl Pharmacol 10:501–513PubMedCrossRefGoogle Scholar
  222. McChesney EW, Fasco MJ, Banks WF (1967b) The metabolism of chloroquine in man after repeated oral dosage. J Pharmacol Exp Ther 158:323–331PubMedGoogle Scholar
  223. McElnay JC, Sidahmed AM, D’Arcy PF, McQuade RD (1985) Chloroquine-digoxin interaction. Int J Pharm 1985:267–274CrossRefGoogle Scholar
  224. McGettigan P, Henry D (2006) Cardiovascular risk and inhibition of cyclooxygenase: asystematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. J Am Med Assn 296:1633–1644CrossRefGoogle Scholar
  225. McKendry RJR et al. (2001) Hydroxychloroquine (HCQ) versus acetaminophen (ACM) versus placebo (PL) in the treatment of nodal osteoarthritis (NOA) of the hands. J Rheumatol 28:1421–1421Google Scholar
  226. McLachlan AJ, Tett SE, Cutler DJ, Day RO (1993) Disposition of the enantiomers of hydroxychloroquine in patients with rheumatoid arthritis following multiple doses of the racemate. Br J Clin Pharmacol 36:78–81PubMedCentralPubMedCrossRefGoogle Scholar
  227. McLachlan AJ, Tett SE, Cutler DJ, Day RO (1994) Disposition and absorption of hydroxychloroquine enantiomers following a single dose of the racemate. Chirality 6:360–364PubMedCrossRefGoogle Scholar
  228. Meller S, Gerber PA, Homey B (2008) Clinical image: blonde by prescription. Arthritis Rheum 58:2286PubMedCrossRefGoogle Scholar
  229. Midha KK, McKay G, Rawson MJ, Hubbard JW (1998) The impact of stereoisomerism in bioequivalence studies. J Pharm Sci 87:797–802PubMedCrossRefGoogle Scholar
  230. Migkos MP, Markatseli TE, Iliou C, Voulgari PV, Drosos AA (2014) Effect of hydroxychloroquine on the lipid profile of patients with Sjögren syndrome. J Rheumatol 41:902–908PubMedCrossRefGoogle Scholar
  231. Miller LC (1995) Cytokines in rheumatic diseases. Biotherapy 8:99–111CrossRefGoogle Scholar
  232. Minta JO, Williams MD (1986) Interactions of antirheumatic drugs with the superoxide generation system of activated human polymorphonuclear leukocytes. J Rheumatol 13:498–504PubMedGoogle Scholar
  233. Miyachi Y, Yoshioka A, Imamura S, Niwa Y (1986) Antioxidant action of antimalarials. Ann Rheum Dis 45:244–248PubMedCentralPubMedCrossRefGoogle Scholar
  234. Mottonen T, Hannonen P, Korpela M, Nissila M, Kautiainen H, Ilonen J, Laasonen L, Kaipiainen-Seppanen O, Franzen P, Helve T, Koski J, Gripenberg-Gahmberg M, Myllykangas-Luosujarvi R, Leirisalo-Repo M, the FIN-RACo Trial Group (2002) FINnish Rheumatoid Arthritis Combination therapy. Delay to institution of therapy and induction of remission using single-drug or combination-disease-modifying antirheumatic drug therapy in early rheumatoid arthritis. Arthritis Rheum 46:894–898PubMedCrossRefGoogle Scholar
  235. Muller-Peddinghaus R, Wurl M (1987) The amplified chemiluminescence test to characterize antirheumatic drugs as oxygen radical scavengers. Biochem Pharmacol 36:1125–1132PubMedCrossRefGoogle Scholar
  236. Mullié C, Jonet A, Desgrouas C, Taudon N, Sonnet P (2012) Differences in anti-malarial activity of 4-aminoalcohol quinoline enantiomers and investigation of the presumed underlying mechanism of action. Malar J 11:65PubMedCentralPubMedCrossRefGoogle Scholar
  237. Munster T, Gibbs JP, Shen D, Baethge BA, Botstein GR, Caldwell J, Dietz F, Ettlinger R, Golden HE, Lindsley H, McLaughlin GE, Moreland LW, Roberts WN, Rooney TW, Rothschild B, Sack M, Sebba AI, Weisman M, Welch KE, Yocum D, Furst DE (2002) Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum 46:1460–1469PubMedCrossRefGoogle Scholar
  238. Namazi MR (2009) The potential negative impact of proton pump inhibitors on the immunopharmacologic effects of chloroquine and hydroxychloroquine. Lupus 18:104–105PubMedCrossRefGoogle Scholar
  239. Nation RL, Hackett LP, Dusci LJ, Ilett KF (1984) Excretion of hydroxychloroquine in human milk. Br J Clin Pharmacol 17:368–369PubMedCentralPubMedCrossRefGoogle Scholar
  240. Nayak V, Esdaile JM (1996) The efficacy of antimalarials in systemic lupus erythematosus. Lupus 5(Suppl 1):S23–S27PubMedCrossRefGoogle Scholar
  241. Neal TM, Vissers MC, Winterbourn CC (1987) Inhibition by nonsteroidal anti-inflammatory drugs of superoxide production and granule enzyme release by polymorphonuclear leukocytes stimulated with immune complexes or formyl-methionyl-leucyl-phenylalanine. Biochem Pharmacol 36:2511–2517PubMedCrossRefGoogle Scholar
  242. Nebbioso M, Livani ML, Steigerwalt RD, Panetta V, Rispoli E (2011) Retina in rheumatic diseases: standard full field and multifocal electroretinography in hydroxychloroquine retinal dysfunction. Clin Exp Optom 94:276–283PubMedCrossRefGoogle Scholar
  243. Neidel J, Zeidler U (1993) Independent effects of interleukin 1 on proteoglycan synthesis and proteoglycan breakdown of bovine articular cartilage in vitro. Agents Actions 39:82–90PubMedCrossRefGoogle Scholar
  244. Neil HA, Perera R, Armitage JM, Farmer AJ, Mant D, Durrington PN (2008) Estimated 10-year cardiovascular risk in a British population: results of a national screening project. Int J Clin Pract 62:1322–1331PubMedCrossRefGoogle Scholar
  245. Neill WA, Panayi GS, Duthie JJR (1973) Action of chloroquine phosphate in rheumatoid arthritis. 2. Chromosome damaging effect. Ann Rheum Dis 32:547–550PubMedCentralPubMedCrossRefGoogle Scholar
  246. Newbold BB (1963) Chemotherapy of arthritis induced in rats by mycobacterial adjuvant. Br J Pharmacol Chemother 21:127–136CrossRefGoogle Scholar
  247. Northover BJ (1977) Effect of indomethacin and related drugs on the calcium ion-dependent secretion of lysosomal and other enzymes by neutrophil polymorphonuclear leucocytes in vitro. Br J Pharmacol 59:253–259PubMedCentralPubMedCrossRefGoogle Scholar
  248. Novikoff AB, Beafay H, De Duve C (1956) Electron microscopy of lysosome rich fractions from rat liver. J Biophys Biochem Cytol 25(4 Suppl):179–184CrossRefGoogle Scholar
  249. Obua C, Ntale M, Lundblad MS, Mahindi M, Gustafsson LL, Ogwal-Okeng JW, Anokbonggo WW, Hellgren U (2006) Pharmacokinetic interactions between chloroquine, sulfadoxine and pyrimethamine and their bioequivalence in a generic fixed-dose combination in healthy volunteers in Uganda. Afr Health Sci 6:86–92PubMedCentralPubMedGoogle Scholar
  250. O’Dell JR (1998) Triple therapy with methotrexate, sulfasalazine, and hydroxychloroquine in patients with rheumatoid arthritis. Rheum Dis Clin North Am 24:465–477PubMedCrossRefGoogle Scholar
  251. O’Dell JR (1999) Combination DMARD therapy with hydroxychloroquine, sulfasalazine, and methotrexate. Clin Exp Rheumatol 17:S53–S58PubMedGoogle Scholar
  252. O’Dell JR, Blakely KW, Mallek JA, Eckhoff PJ, Leff RD, Wees SJ, Sems KM, Fernandez AM, Palmer WR, Klassen LW, Paulsen GA, Haire CE, Moore GF (2001) Treatment of early seropositive rheumatoid arthritis: a two-year, double-blind comparison of minocycline and hydroxychloroquine. Arthritis Rheum 44:2235–2241PubMedCrossRefGoogle Scholar
  253. O’Dell JR, Petersen K, Leff R, Palmer W, Schned E, Blakely K, Haire C, Fernandez A (2006) Etanercept in combination with sulfasalazine, hydroxychloroquine, or gold in the treatment of rheumatoid arthritis. J Rheumatol 33:213–218PubMedGoogle Scholar
  254. Oforah E, Anyogo S (2000) The contributions of various chloroquine salts to the biliary and urinary execretion of hepatic paracetamol conjugation metabolites in the rat. Drug Metabol Drug Interact 16:129–141PubMedGoogle Scholar
  255. Ogunbona FA, Onyeji CO, Bolaji OO, Torimiro SE (1987) Excretion of chloroquine and desethylchloroquine in human milk. Br J Clin Pharmacol 23:473–476PubMedCentralPubMedCrossRefGoogle Scholar
  256. Ohsugi Y, Gershwin ME (1984) Inhibition by various antiarthritic agents of murine splenic B cell colony formation. Immunopharmacology 7:1–7PubMedCrossRefGoogle Scholar
  257. Onyeji CO, Toriola TA, Ogunbona FA (1993) Lack of pharmacokinetic interaction between chloroquine and imipramine. Ther Drug Monit 15:43–46PubMedCrossRefGoogle Scholar
  258. Østensen M, Brown ND, Chiang PK, Aarbakke J (1985) Hydroxychloroquine in human breast milk. Eur J Clin Pharmacol 28:357PubMedCrossRefGoogle Scholar
  259. Padol IT, Hunt RH (2010) Association of myocardial infarctions with COX-2 inhibition may be related to immunomodulation towards a Th1 response resulting in atheromatous plaque instability: an evidence-based interpretation. Rheumatology 49:837–843PubMedCrossRefGoogle Scholar
  260. Page F (1951) Treatment of lupus erythematosus with mepacrine. Lancet 2:755–758PubMedCrossRefGoogle Scholar
  261. Panayi GS, Neill WA, Duthie JJR, McCormick JN (1973) Action of chloroquine phosphate in rheumatoid arthritis. 1. Immunosuppressive effect. Ann Rheum Dis 32:316PubMedCentralPubMedCrossRefGoogle Scholar
  262. Pappu A, Hauser G (1981) Changes in brain phosphoinositide metabolism induced by cationic amphiphilic drugs in vitro. Biochem Pharmacol 30:3234–3246CrossRefGoogle Scholar
  263. Parke AL (1993) Antimalarial drugs, pregnancy and lactation. Lupus 2(Suppl 1):S21–S23PubMedCrossRefGoogle Scholar
  264. Pasternak RD, Marks RL, Hubbs SJ, DiPasquale G (1985) Effects of antirheumatic agents on the mitogen response of arthritic rat spleen cells. Rec Commun Chem Path Pharmacol 48:353–367Google Scholar
  265. Paulus HE (1988) Antimalarial agents compared with or in combination with other disease-modifying antirheumatic drugs. Am J Med 85:45–52PubMedCrossRefGoogle Scholar
  266. Pavelka K Jr, Pavelka Sen K, Peliskova Z, Vacha J, Trnavsky K (1989) Hydroxychloroquine sulphate in the treatment of rheumatoid arthritis: a double blind comparison of two dose regimens. Ann Rheum Dis 48:542–546PubMedCentralPubMedCrossRefGoogle Scholar
  267. Payne JP (1894) A lecture on lupus erythematosus. Clin J IV:223Google Scholar
  268. Penn SK, Kao AH, Schott LL, Elliott JR, Toledo FG, Kuller L, Manzi S, Wasko MC (2010) Hydroxychloroquine and glycemia in women with rheumatoid arthritis and systemic lupus erythematosus. J Rheumatol 37:1136–1142PubMedCentralPubMedCrossRefGoogle Scholar
  269. Perrin DD (1965) Dissociation constants of organic bases in aqueous solutions. Butterworths, LondonGoogle Scholar
  270. Petri M (1996) Hydroxychloroquine use in the Baltimore Lupus Cohort; effects on lipids, glucose and thrombosis. Lupus 5(Suppl 1):S16–S22PubMedCrossRefGoogle Scholar
  271. Petri M (2005) Lupus in Baltimore: evidence-based ‘clinical pearls’ from the Hopkins Lupus Cohort. Lupus 14:970–973PubMedCrossRefGoogle Scholar
  272. Petri M, Purvey S, Fang H, Magder LS (2012) Predictors of organ damage in systemic lupus erythematosus: the Hopkins Lupus Cohort. Arthritis Rheum 64:4021–4028PubMedCentralPubMedCrossRefGoogle Scholar
  273. Pettipher ER, Higgs GA, Henderson B (1986) Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci USA 1986(83):8749–8753CrossRefGoogle Scholar
  274. Pico S, Peyron F, Vuillez J-P, Polack B, Ambroise-Thomas P (1991) Chloroquine inhibits tumour necrosis factor production by human macrophages in vitro. J Infect Dis 164:830CrossRefGoogle Scholar
  275. Pons-Estel GJ, Alarcón GS, McGwin G Jr, Danila MI, Zhang J, Bastian HM, Reveille JD, Vilá LM, Lumina Study Group (2009) Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: LXV, data from a multiethnic US cohort. Arthritis Rheum 61:830–839PubMedCentralPubMedCrossRefGoogle Scholar
  276. Projean D, Baune B, Farinotti R, Flinois JP, Beaune P, Taburet AM, Ducharme J (2003) In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos 31:748–754PubMedCrossRefGoogle Scholar
  277. Punzi L et al. (1996) Soluble interleukin 2 receptors and treatment with hydroxychloroquine in erosive osteoarthritis. J Rheumatol 23:1477–1478PubMedGoogle Scholar
  278. Pussard E, Verdier, Blayo M-C (1986) Simultaneous determination of chloroquine, amadiaquine and their metabolites in human plasma, red blood cells, and whole blood and urine by column liquid chromatography. J Chromatogr 374:111–118PubMedCrossRefGoogle Scholar
  279. Raghoebar M, Peeters PA, van den Berg W, van Ginneken CA (1986) Mechanisms of cell association of chloroquine to leucocytes. J Pharmacol Exp Ther 238:302–306PubMedGoogle Scholar
  280. Raina RK, Bano G, Amla V, Kapoor V, Gupta KL (1993) The effect of aspirin, paracetamol and analgin on pharmacokinetics of chloroquine. Indian J Physiol Pharmacol 37:229–231PubMedGoogle Scholar
  281. Rainsford KD (1985) Effects of anti-inflammatory drugs on catabolin-induced cartilage destruction in vitro. Int J Tissue React 7:123–126PubMedGoogle Scholar
  282. Rainsford KD (1986) Effects of antimalarial drugs on interleukin 1-induced cartilage proteoglycan degradation in-vitro. J Pharm Pharmacol 38:829–833PubMedCrossRefGoogle Scholar
  283. Rainsford KD (1987) Effects of anti-inflammatory drugs on the release from synovial tissues of cartilage-resorbing (catabolin-like) activity in vitro: role of assay conditions and drug effects on eicosanoid metabolism. In: The control of tissue damage. The Strangeways Research Laboratory 75th Annual Symposium. Arthritis and Rheumatism Council for Research, p 130Google Scholar
  284. Rainsford KD (1988) Inhibitors of prostaglandin and leukotriene production. In: Curtis-Prior PB (ed) Prostaglandins: biology and chemistry of prostaglandins and related eicosanoids. Churchill-Livingstone, London, pp 52–68Google Scholar
  285. Rainsford KD (1990) Analgesics vs. nonsteroidal anti-inflammatory drugs (NSAIDs): differences among NSAIDs. In: Brandt KD (ed) Cartilage changes in osteoarthritis. Indiana University School of Medicine, pp 129–136Google Scholar
  286. Rainsford KD (1992). Effects of antimalarial drugs oin the progression of adjuvant induced arthritis in rats. Unpublished studiesGoogle Scholar
  287. Rainsford KD, Rashad SY, Revell PA, Low FM, Hemingway AP, Walker FS, Johnson D, Stetsko P, Ying C, Smith F (1992) Effects of NSAIDs on cartilage proteoglycan and synovial prostaglandin metabolism in relation to progression of joint deterioration in osteoarthritis. In: Bálint G, Gömör B, Hadinka L (eds) Rheumatology, state of the art. Elsevier, Amsterdam, pp 177–183Google Scholar
  288. Rand JH, Wu X-X, Quinn AS, Chen PP, Hathcock JJ, Taatjes DJ (2008) Hydroxychloroquine directly reduces the binding of anti-phospholipid antibody-β2-glycoprotein I complexes to phospholipid bilayers. Blood 112:1687–1695PubMedCentralPubMedCrossRefGoogle Scholar
  289. Räsänen L, Lehto M, Hyöty H, Leinikki P (1989) Collaboration between human blood dentritic cells and monocytes in antigen presentation. APMIS 97:981–986PubMedCrossRefGoogle Scholar
  290. Riches DWH, Stanworth DR (1982) Weak-base induced lysosomal secretion by macrophages: an alternative trigger mechanism that is independent of complement activation. Adv Exp Biol 155:313–323CrossRefGoogle Scholar
  291. Riches DWH, Morris CJ, Stanworth DR (1981) Induction of selective acid hydrolase release from mouse macrophages during exposure to chloroquine and quinine. Biochem Pharmacol 30:629–634PubMedCrossRefGoogle Scholar
  292. Robertson CR et al. (1993) Treatment of erosive osteoarthritis with hydroxychloroquine. Arthritis Rheum 36:S167Google Scholar
  293. Ruiz-Irastorza G, Khamashta MA (2008) Hydroxychloroquine: the cornerstone of lupus therapy. Lupus 17:271–273PubMedCrossRefGoogle Scholar
  294. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA (2010) Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus. Ann Rheum Dis 69:20–28PubMedCrossRefGoogle Scholar
  295. RxFiles Detailing Program (2008) Drug comparison charts, 7th edn. In: Jensen B, Regier LD (Eds). Saskatoon City Hospital, Saskatoon, p 62Google Scholar
  296. Rynes RI (1988) Toxicity of antimalarial drugs in rheumatoid arthritis. Agents Actions Suppl 44:151–157Google Scholar
  297. Rynes RI (1992) Antimalarials. In: Dixon JS, Furst DE (eds) Second-line agents in the treatment of rheumatic diseases. Marcel Dekker, New York, pp 245–266Google Scholar
  298. Rynes RI (1997) Antimalarial drugs in the treatment of rheumatological diseases. Br J Rheumatol 36:799–805PubMedCrossRefGoogle Scholar
  299. Saklatvala J, Sarsfield SJ (1988) How do interleukin-1 and tumour necrosis factor induce degradation of proteoglycan in cartilage? In: Glauert A (ed) The control of tissue damage. Elsevier, Amsterdam, pp 97–108Google Scholar
  300. Saklatvala J, Pilsworth LMC, Sarsfield SJ, Gavrilovic J, Health JK (1984) Pig catabolin is a form of interleukin 1. Cartilage and bone resorb, fibroblasts make prostaglandins and collagen, and thymocyte proliferation is augmented in response to one protein. Biochem J 224:461–466PubMedCentralPubMedCrossRefGoogle Scholar
  301. Salaffi F, Carotti M, Cervini C (1996) Combination therapy of cyclosporine A with methotrexate or hydroxychloroquine in refractory rheumatoid arthritis. Scand J Rheumatol 25:16–23PubMedCrossRefGoogle Scholar
  302. Salmeron G, Lipsky PE (1983) Immunosuppressive potential of antimalarials. Am Med J 75(1A):19–24CrossRefGoogle Scholar
  303. Salton DJ (1987) Chloroquine and the eye. Br J Clin Pract 41(Suppl 52):50–55Google Scholar
  304. Sammaritano LR, Bermas BL (2014) Rheumatoid arthritis medications and lactation. Curr Opin Rheumatol 26:354–360PubMedCrossRefGoogle Scholar
  305. Sams WM (1967) Chloroquine: mechanism of action. Mayo Clin Proc 42:300–309PubMedGoogle Scholar
  306. Sanders M (2000) A review of controlled clinical trials examining the effects of antimalarial compounds and gold compounds on radiographic progression in rheumatoid arthritis. J Rheumatol 27:523–529PubMedGoogle Scholar
  307. Saviola G et al. (2012) Clondronate and hydroxychloroquine in erosive osteoarthritis: a 24-month open randomized pilot study. Mod Rheumatol 22(2):256–263PubMedCrossRefGoogle Scholar
  308. Scala G, Oppenheim JJ (1983) Antigen presentation by human monocytes: evidence for stimulant processing and requirement for interleuklin 1. J Immunol 131:1160–1166PubMedGoogle Scholar
  309. Schug BS, Kalbhen DA (1995) Influence of chloroquine and other substances on the collagenolytic activity in human osteoarthritic cartilage in vitro. Arzneimittelforschung 45:285–289PubMedGoogle Scholar
  310. Semrau K, Kuhn L, Kasonde P, Sinkala M, Kankasa C, Shutes E, Vwalika C, Ghosh M, Aldrovandi G, Thea DM (2006) Impact of chloroquine on viral load in breast milk. Trop Med Int Health 11:800–833PubMedCentralPubMedCrossRefGoogle Scholar
  311. Seror R, Theander E, Bootsma H, Bowman SJ, Tzioufas A, Gottenberg JE, Ramos-Casals M, Dörner T, Ravaud P, Mariette X, Vitali C (2014) Outcome measures for primary Sjögren’s syndrome: a comprehensive review. J Autoimmun 51:51–56PubMedCrossRefGoogle Scholar
  312. Seror R, Theander E, Brun JG, Ramos-Casals M, Valim V, Dörner T, Bootsma H, Tzioufas A, Solans-Laqué R, Mandl T, Gottenberg JE, Hachulla E, Sivils KL, Ng WF, Fauchais AL, Bombardieri S, Valesini G, Bartoloni E, Saraux A, Tomsic M, Sumida T, Nishiyama S, Caporali R, Kruize AA, Vollenweider C, Ravaud P, Vitali C, Mariette X, Bowman SJ, Sjögren’s Task Force EULAR (2015) Validation of EULAR primary Sjögren’s syndrome disease activity (ESSDAI) and patient indexes (ESSPRI). Ann Rheum Dis 74:859–866PubMedCrossRefGoogle Scholar
  313. Shearer RV, Dubois EL (1967) Ocular changes induced by long-term hydroxychloroquine (plaquenil) therapy. Am J Ophthalmol 64:245–252PubMedCrossRefGoogle Scholar
  314. Sheppeard H, Pilsworth LM, Hazleman B, Dingle JT (1982) Effects of antirheumatoid drugs on the production and action of porcine catabolin. Ann Rheum Dis 41:463–468PubMedCentralPubMedCrossRefGoogle Scholar
  315. Sibtain SK et al. (2007) Role of hydroxychloroquine in management of osteoarthritis. Rheumatology (Oxford) 46:i61–i61Google Scholar
  316. Silva MA, Ishii-Iwamoto EL, Bracht A, Caparroz-Assef SM, Kimura E, Cuman RK, Bersani-Amado CA (2005) Efficiency of combined methotrexate/chloroquine therapy in adjuvant-induced arthritis. Fundam Clin Pharmacol 19:479–489PubMedCrossRefGoogle Scholar
  317. Sisó A, Ramos-Casals M, Bové A, Brito-Zerón P, Soria N, Muñoz S, Testi A, Plaza J, Sentís J, Coca A (2008) Previous antimalarial therapy in patients diagnosed with lupus nephritis: influence on outcomes and survival. Lupus 17:281–288PubMedCrossRefGoogle Scholar
  318. Skinner-Adams TS, Andrews KT, Melville L, McCarthy J, Gardiner DL (2007) Synergistic interactions of the antiretroviral protease inhibitors saquinavir and ritonavir with chloroquine and mefloquine against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 51:759–762PubMedCentralPubMedCrossRefGoogle Scholar
  319. Smith RJ (1977) Modulation of phagocytosis by and lysosomal enzyme secretion from guinea-pig neutrophils: effect of nonsteroid anti-inflammatory agents and prostaglandins. J Pharmacol Exp Ther 200:647–657PubMedGoogle Scholar
  320. Sneader W (2005) Drug discovery. A history. John Wiley, ChichesterCrossRefGoogle Scholar
  321. Somer M, Kallio J, Pesonen U, Pyykko K, Huupponen R, Scheinin M (2000) Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br J Clin Pharmacol 49:549–554PubMedCentralPubMedCrossRefGoogle Scholar
  322. Spaldin V, Madden S, Pool WF, Woolf TF, Park BK (1994) The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes. Br J Clin Pharmacol 38:15–22PubMedCentralPubMedCrossRefGoogle Scholar
  323. Sperber K, Quraishi H, Kalb TH, Stecher V, Mayer L (1993) Selective regulation of cytokine secretion by hydroxychloroquine: inhibition of interleukin 1 alpha (IL-1α) and IL-6 in human monocytes and T cells. J Rheumatol 20:813–818Google Scholar
  324. Stecher VJ, Connolly KM, Speicht PT (1987) Fibronectin and macrophages as parameters of disease-modifying antirheumatic activity. Br J Clin Practice 41(Suppl 52):64–71Google Scholar
  325. Stepien KB, Wilczok T (1982) Studies on the mechanism of chloroquine binding to synthetic DOPA-melanin. Biochem Pharmacol 31:3359–3365PubMedCrossRefGoogle Scholar
  326. Stepien K, Porebska M, Wilczok T (1987) Interaction of chloroquine with melanosomes and model melanin complexes. Stud Biophys 122:165–174Google Scholar
  327. Stringer E, Bohnsack J, Bowyer SL, Griffin TA, Huber AM, Lang B, Lindsley CB, Ota S, Pilkington C, Reed AM, Scuccimarri R, Feldman BM (2010) Treatment approaches to juvenile dermatomyositis (JDM) across North America: the Childhood Arthritis and Rheumatology Research Alliance (CARRA) JDM Treatment Survey. J Rheumatol 37:1953–1961PubMedCrossRefGoogle Scholar
  328. Sun S, Rao NL, Venable J, Thurmond R, Karlsson L (2007) TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm Allergy Drug Targets 6:223–235PubMedCrossRefGoogle Scholar
  329. Suzuki Y, Ito I, Ito M, Yamagami I (1973) Changes of mucopolysaccharase, protease and collagenolytic activities in rats with adjuvant arthritis and the effects of various anti-inflammatory drugs. Nippon Yakurigaku Zasshi 69:947–968 (in Japanese) PubMedCrossRefGoogle Scholar
  330. Tagoe CN, Ofori-Adjei D (1995) Effects of chloroquine and its enantiomers on the development of rat embryos in vitro. Teratology 52:137–142PubMedCrossRefGoogle Scholar
  331. Tang C, Godfrey T, Stawell R, Nikpour M (2012) Hydroxychloroquine in lupus: emerging evidence supporting multiple beneficial effects. Intern Med J 42:968–978PubMedGoogle Scholar
  332. Tauber R, Heinze K, Reutter W (1985) Effect of chloroquine on the degradation of l-fucose and the polypeptide moiety of plasma membrane glycoproteins. Eur J Cell Biology 39:380–385Google Scholar
  333. Tehrani R, Ostrowski RA, Hariman R, Jay WM (2008) Ocular toxicity of hydroxychloroquine. Semin Ophthalmol 23:201–209PubMedCrossRefGoogle Scholar
  334. Teitz CC, Chrisman OD (1975) The effect of salicylate and chloroquine on prostaglandin-induced articular damage in the rabbit knee. Clin Orthop Relat Res 12:264–274CrossRefGoogle Scholar
  335. Tejeswar Rao P (1977) Intra-articular chloroquine in rheumatoid and osteo-arthritis of knee joint. J Indian Med Assoc 69(9):193–195PubMedGoogle Scholar
  336. Tett SE (1993) Clinical pharmacokinetics of slow-acting antirheumatic drugs. Clin Pharmacokinet 25:392–407PubMedCrossRefGoogle Scholar
  337. Tett SE, Cutler DJ, Day RO, Brown KF (1989) Bioavailability of hydroxychloroquine tables in healthy volunteers. Br J Pharmacol 27:771–779CrossRefGoogle Scholar
  338. Tett S, Cutler D, Day R (1990) Antimalarials in rheumatic diseases. Bailliere’s Clin Rheumatol 4:467–489CrossRefGoogle Scholar
  339. Tett S, McLachlan A, Day R, Cutler D (1993) Insights from pharmacokinetic and pharmacodynamic studies of hydroxychloroquine. Agents Actions Suppl 44:145–190PubMedGoogle Scholar
  340. Tett SE, McLachlan AJ, Cutler DJ, Day RO (1994) Pharmacokinetics and pharmacodynamics of hydroxychloroquine enantiomers in patients with rheumatoid arthritis receiving multiple doses of racemate. Chirality 6:355–359PubMedCrossRefGoogle Scholar
  341. Thiele DL, Lipsky PE (1985a) Modulation of human natural killer cell function by l-leucine methyl ester: monocyte-dependent depletion from human peripheral blood mononuclear cells. J Immunol 134:786–793PubMedGoogle Scholar
  342. Thiele DL, Lipsky PE (1985b) Regulation of cellular function by products of lysosomal enzyme activity: elimination of human natural killer cells by a dipeptide methyl ester generated from l-leucine methyl ester by monocytes or poplymorphonuclear leukocytes. Proc Nat Acad Sci USA 82:2468–2472PubMedCentralPubMedCrossRefGoogle Scholar
  343. Thompson GR, Bartholomew L (1964) The effect of chloroquine on antibody production. Univ Michigan Med Ctr J 30:227–230Google Scholar
  344. Thorens B, Vassalli P (1986) Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature 321:618–620PubMedCrossRefGoogle Scholar
  345. Titus EO (1989) Recent developments in the understanding of the phramacokinetics and mechanism of action of chloroquine. Ther Drug Monit 11:369–379PubMedCrossRefGoogle Scholar
  346. Trnavská Z, Trnavský K (1967) Influence of anti-rheumatic drugs on urinary excretion of hydroxyproline in lathyrism. Nature 214:384PubMedCrossRefGoogle Scholar
  347. Trnavsky K, Gatterova J, Linduskova M, Peliskova Z (1993) Combination therapy with hydroxychloroquine and methotrexate in rheumatoid arthritis. Z Rheumatol 52:292–296PubMedGoogle Scholar
  348. Tzekov R (2005) Ocular toxicity due to chloroquine and hydroxychloroquine: electrophysiological and visual function correlates. Doc Ophthalmol 110:111–120PubMedCrossRefGoogle Scholar
  349. Van Cauwenberge H, Lecomte J, Lapiere C (1958a) Influence de la chloroquine sur l’oedeme a la ovalbumine ou au dextran, et sur la test d’ambrose et de eds chez le rat. C R Soc Biol 152:1405–1408Google Scholar
  350. Van Cauwenberge H, Lecomte J, Lapiere C (1958b) Influence de la chloroquine sur le development du granulome a l’ouate et sur la poche granulomateuse. C R Soc Biol 152:1414–1417Google Scholar
  351. van den Borne BE, Landewe RB, Goei The HS, Rietveld JH, Zwinderman AH, Bruyn GA, Breedveld FC, Dijkmans BA (1998) Combination therapy in recent onset rheumatoid arthritis: a randomized double blind trial of the addition of low dose cyclosporine to patients treated with low dose chloroquine. J Rheumatol 25:1493–1498PubMedGoogle Scholar
  352. van der Heijde DM, van Riel PL, Nuver-Zwart IH, Gribnau FW, vad de Putte LB (1989) Effects of hydroxychloroquine and sulphasalazine on progression of joint damage in rheumatoid arthritis. Lancet 1:1036–1038PubMedCrossRefGoogle Scholar
  353. van Loenen HJ, Dijkmans BA, De Vries E (1990) Concentration dependency of cyclosporin and chloroquine as inhibitors of cell proliferation and immunoglobulin production upon mitogen stimulation of mononuclear cells. Clin Exp Rheumatol 1990(8):59–61Google Scholar
  354. Van Roon EN, van den Bemt PMLA, Jansen TLThA, Houtman NM, van de Laar MAFJ, Brouwers JRBJ (2009) An evidence-based assessment of the clinical significance between disease-modifying antirheumatic drugs and non-antirheumatic drugs according to rheumatologists and pharmacists. Clin Ther 31:1737–1746PubMedCrossRefGoogle Scholar
  355. van Vollenhoven RF, Ernestam S, Geborek P, Petersson IF, Coster L, Waltbrand E, Zickert A, Theander J, Thorner A, Hellstrom H, Teleman A, Dackhammar C, Akre F, Forslind K, Ljung L, Oding R, Chatzidionysiou A, Wornert M, Bratt J (2009) Addition of infliximab compared with addition of sulfasalazine and hydroxychloroquine to methotrexate in patients with early rheumatoid arthritis (Swefot trial): 1-year results of a randomised trial. Lancet 374:459–466PubMedCrossRefGoogle Scholar
  356. Varga F (1968a) Tissue distribution of chloroquine in the rat. Acta Physiol Acad Sci Hung Tomus 34:319–325Google Scholar
  357. Varga F (1968b) Intracellular localization of chloroquine in the liver and kidney of the rat. Acta Physiol Acad Sci Hung Tomus 34:327–332Google Scholar
  358. Vayuvegula B, Ohira K, Gollapudi S, Gupta S (1990) Role of monocytes in anti-CD3—induced T-cell DNA synthesis: effect of chloroquine and monensin on anti-CD3—induced T-cell activation. J Clin Immunol 10:247–254PubMedCrossRefGoogle Scholar
  359. Verstappen SM, Jacobs JW, Bijlsma JW, Heurkens AH, van Booma-Frankfort C, Borg EJ, Hofman DM, van der Veen MJ, the Utrecht Arthritis Cohort Study Group (2003) Five-year follow-up of rheumatoid arthritis patients after early treatment with disease-modifying antirheumatic drugs versus treatment according to the pyramid approach in the first year. Arthritis Rheum 48:1797–1807PubMedCrossRefGoogle Scholar
  360. Vezmar M, Georges E (2000) Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Biochem Pharmacol 59:1245–1252PubMedCrossRefGoogle Scholar
  361. Viala A, Deturmeny E, Aubert C, Estadieu M, Durnad A, Cano JP, Delmont J (1983) Determination of chloroquine and monodesethylchloroquine in hair. J Forensic Sci 28:922–928PubMedCrossRefGoogle Scholar
  362. Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, Daniels TE, Fox PC, Fox RI, Kassan SS, Pillemer SR, Talal N, Weisman MH, European Study Group on Classification Criteria for Sjögren’s Syndrome (2002) Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 61:554–558PubMedCentralPubMedCrossRefGoogle Scholar
  363. Vitali C, Bootsma H, Bowman SJ, Dorner T, Gottenberg JE, Mariette X, Ramos-Casals M, Ravaud P, Seror R, Theander E, Tzioufas AG (2013) Classification criteria for Sjogren’s syndrome: we actually need to definitively resolve the long debate on the issue. Ann Rheum Dis 72:476–478PubMedCrossRefGoogle Scholar
  364. Volastro PS, Malawista SE, Chrisman OD (1973) Chloroquine: protective and destructive effects on injured rabbit cartilage in vivo. Clin Orthop Relat Res 14:243–248CrossRefGoogle Scholar
  365. Vuolteenaho K, Moilanen T, Hämäläinen M, Moilanen E (2003) Regulation of nitric oxide production in osteoarthritic and rheumatoid cartilage. Role of endogenous IL-1 inhibitors. Scand J Rheumatol 32:19–24PubMedCrossRefGoogle Scholar
  366. Vuolteenaho K, Kujala P, Moilanen T, Moilanen E (2005) Aurothiomalate and hydroxychloroquine inhibit nitric oxide production in chondrocytes and in human osteoarthritic cartilage. Scand J Rheumatol 34:475–479PubMedCrossRefGoogle Scholar
  367. Wallace DJ (1996) The history of antimalarials. Lupus 5(Suppl 1):S2–S3PubMedCrossRefGoogle Scholar
  368. Ward PA (1966) The chemosuppression of chemotaxis. J Exp Med 23:1038–1044Google Scholar
  369. Wei LC, Chen SN, Ho CL, Kuo YH, Ho JD (2001) Progression of hydroxychloroquine retinopathy after discontinuation of therapy: case report. Chang Gung Med J 24:329–334PubMedGoogle Scholar
  370. Weissmann G (1984) Labilization and stabilization of lysosomes. Federation Proc 23:1038–1044Google Scholar
  371. White NJ (1985) Clinical pharmacokinetics of antimalarial drugs. Clin Pharmacokinet 10:187–215PubMedCrossRefGoogle Scholar
  372. Whitehead RW, Hager JP (1954) The anti-inflammatory and anti-hyaluronidase effect of chloroquine diphosphate. J Pharmacol Exp Ther 110:52–53Google Scholar
  373. Whitehouse MW (1967) Evaluation of potential antirheumatic drugs in vitro using lymphocytes and epithelial cells. The selective action of indoxole, methyl glyoxal and chloroquine. J Pharm Pharmacol 19:590–595PubMedCrossRefGoogle Scholar
  374. Whitehouse MW, Boström H (1962) The effect of some anti-rheumatic drugs on the metabolism of connective tissues. Biochem Pharmacol 11:1175–1201PubMedCrossRefGoogle Scholar
  375. Whitehouse MW, Boström H (1965) Biochemical properties of anti-inflammatory drugs. VI. The effects of chloroquine (resochin), mepacrine (quinacrine) and some of their potential metabolites on cartilage metabolism and oxidative phosphorylation. Biochem Pharmacol 14:1173–1184PubMedCrossRefGoogle Scholar
  376. Whitehouse MW, Cowley FK (1966) Inhibition of connective tissue proteases by antimalarials. Biochem J 98:118–120Google Scholar
  377. Wiegmann K, Schutze S, Machleidt T, Witte D, Kronke M (1994) Functional dichotomy of neutral and sphingomylinase in tumor necrosis factor signalling. Cell 78:1005PubMedCrossRefGoogle Scholar
  378. Wildfeuer A (1983) Action of antirheumatic drugs on the function of human leucocytes. Arzneimittelforschung 33:780–783PubMedGoogle Scholar
  379. Williams WR, Davidson LAG (1983) Effects of therapeutic drugs on lymphocyte transformation. Br J Clin Pharmacol 15:83–90PubMedCentralPubMedCrossRefGoogle Scholar
  380. Witiak DT, Grattan DA, Heaslip RJ, Rahwan RG (1981) Synthesis and preliminary pharmacological evaluation of asymmetric chloroquine analogues. J Med Chem 24:712–717PubMedCrossRefGoogle Scholar
  381. Wolfe F, Michaud K (2008) The risk of myocardial infarction and pharmacologic and nonpharmacologic myocardial infarction predictors in rheumatoid arthritis: a cohort and nested case-control analysis. Arthritis Rheum 58:2612–2621PubMedCrossRefGoogle Scholar
  382. Woo TY, Callen JP, Voorhees JJ, Bickers DR, Hanno R, Hawkins C (1984) Cutaneous lesions of dermatomyositis are improved by hydroxychloroquine. J Am Acad Dermatol 10:592–600PubMedCrossRefGoogle Scholar
  383. Wozniacka A, Lesiak A, Boncela J, Smolarczyk K, McCauliffe DP, Sysa-Jedrzejowska A (2008) The influence of antimalarial treatment in IL-1β, IL-6 and TNF-α mRNA expression on UVB-irradiated skin in systemic lupus erythematosus. Br J Dematol 159:1124–1130Google Scholar
  384. Yanagishita M, Hascall VC (1984) Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effects of chloroquine. J Biol Chem 259:10270–10283PubMedGoogle Scholar
  385. Yasuda T (2006) Cartilage destruction by matrix degradation products. Mod Rheumatol 16:197–205PubMedCentralPubMedCrossRefGoogle Scholar
  386. Yi Q, Holm G, Lefvert AK (1996) Idiotype-induced T cell stimulation requires antigen presentation in association with HLA-DR molecules. Clin Exp Immunol 104:359–365PubMedCentralPubMedCrossRefGoogle Scholar
  387. Zhang W, Doherty M, Leeb BF, Alekseeva L, Arden NK, Bijlsma JW, Dinçer F, Dziedzic K, Häuselmann HJ, Herrero-Beaumont G, Kaklamanis P, Lohmander S, Maheu E, Martín-Mola E, Pavelka K, Punzi L, Reiter S, Sautner J, Smolen J, Verbruggen G, Zimmermann-Górska I (2007) EULAR evidence based recommendations for the management of hand osteoarthritis: report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 66:377–388PubMedCentralPubMedCrossRefGoogle Scholar
  388. Zhou D, Liu Y, Xu LH, Ouyang DY, Pan H, Zhang XY, Zhao GX, He XH (2015) Chloroquine differentially modulates inflammatory cytokine expression in RAW 264.7 cells in response to inactivated Staphylococcus aureus. Inflammation 38:745–755PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • K. D. Rainsford
    • 1
  • Ann L. Parke
    • 2
  • Matthew Clifford-Rashotte
    • 3
  • W. F. Kean
    • 4
    • 5
    Email author
  1. 1.Biomedical Research CentreSheffield Hallam UniversitySheffieldUK
  2. 2.Department of RheumatologySt Francis Hospital and Medical CenterHartfordUSA
  3. 3.McMaster UniversityHamiltonCanada
  4. 4.Department of Medicine (Rheumatology)McMaster University Faculty of Health SciencesHamiltonCanada
  5. 5. Department of Medicine (Rheumatology)McMaster University Faculty of Health SciencesHamiltonCanada

Personalised recommendations