Advertisement

Inflammopharmacology

, Volume 23, Issue 6, pp 291–305 | Cite as

Neuroprotective mechanism of losartan and its interaction with nimesulide against chronic fatigue stress

  • Anil KumarEmail author
  • Barinder Singh
  • Jitendriya Mishra
  • Sangeeta Pilkhwal Sah
  • Raghavender Pottabathini
Research Article

Abstract

Potential role of angiotensin-II and cyclooxygenase have been suggested in the pathophysiology of chronic fatigue stress. The present study has been designed to evaluate the neuroprotective effect of losartan and its interaction with nimesulide against chronic fatigue stress and related complications in mice. In the present study, male Laca mice (20–30 g) were subjected to running wheel activity test session (RWATS) for 6 min daily for 21 days. Losartan, nimesulide and their combinations were administered daily for 21 days, 45 min before being subjected to RWATS. Various behavioral and biochemical and neuroinflammatory mediators were assessed subsequently. 21 days RWATS treatment significantly decreased number of wheel rotations/6 min indicating fatigue stress like behaviors as compared to naive group. 21 days treatment with losartan (10 and 20 mg/kg, ip), nimesulide (5 and 10 mg/kg, po) and their combinations significantly improved behavior [increased number of wheel rotations, reversal of post-exercise fatigue, locomotor activity, antianxiety-like behavior (number of entries, latency to enter and time spent in mirror chamber), and memory performance (transfer latency in plus-maze performance task)], biochemical parameters (reduced serum corticosterone, brain lipid peroxidation, nitrite concentration, acetylcholinesterase activity, restored reduced glutathione levels and catalase activity) as compared to RWATS control. Besides, TNF-α, CRP levels were significantly attenuated by these drugs and their combinations as compared to control. The present study highlights the role of cyclooxygenase modulation in the neuroprotective effect of losartan against chronic fatigue stress-induced behavioral, biochemical and cellular alterations in mice.

Keywords

Fatigue Stress Oxidative damage Losartan RWATS 

Notes

Acknowledgments

Authors gratefully acknowledge the financial support of University Grants Commission (New Delhi) for carrying out this research work.

Compliance with ethical standard heading

Conflict of interest

Authors declare that they do not have any competing financial interests. There is no conflict of interest between the authors to declare.

References

  1. Aguilera G, Kiss A, Luo X (1995) Increased expression of type 1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. J Neuroendocrinol 7:775–783CrossRefPubMedGoogle Scholar
  2. Alvarez A, Piqueras L, Bello R, Canet A, Moreno L, Kubes P, Sanz MJ (2001) Angiotensin II is involved in nitric oxide synthase and cyclo-oxygenase inhibition-induced leukocyte-endothelial cell interactions in vivo. Br J Pharmacol 132:677–684. doi: 10.1038/sj.bjp.0703867 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Arnett SV, Clark IA (2012) Inflammatory fatigue and sickness behaviour - lessons for the diagnosis and management of chronic fatigue syndrome. J Affect Disord 141:130–142. doi: 10.1016/j.jad.2012.04.004 CrossRefPubMedGoogle Scholar
  4. Aslakson E, Vollmer-Conna U, White PD (2006) The validity of an empirical delineation of heterogeneity in chronic unexplained fatigue. Pharmacogenomics 7:365–373. doi: 10.2217/14622416.7.3.365 CrossRefPubMedGoogle Scholar
  5. Benicky J et al (2011) Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology 36:857–870. doi: 10.1038/npp.2010.225 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bugajski J, Gadek-Michalska A, Głód R, Bugajski AJ (2001) Effect of social stress on COX-1 and COX-2-induced alterations in the adrenergic agonists-evoked hypothalamic-pituitary-adrenal responses. J Physiol Pharmacol 52:811–822PubMedGoogle Scholar
  7. Candelario-Jalil E et al (2002) Neuroprotective efficacy of nimesulide against hippocampal neuronal damage following transient forebrain ischemia. Eur J Pharmacol 453:189–195CrossRefPubMedGoogle Scholar
  8. Capettini LS, Montecucco F, Mach F, Stergiopulos N, Santos RA, da Silva RF (2012) Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des 18:963–970CrossRefPubMedGoogle Scholar
  9. Castren E, Saavedra JM (1988) Repeated stress increases the density of angiotensin II binding sites in rat paraventricular nucleus and subfornical organ. Endocrinology 122:370–372. doi: 10.1210/endo-122-1-370 CrossRefPubMedGoogle Scholar
  10. Cernak I, O’Connor C, Vink R (2002) Inhibition of cyclooxygenase 2 by nimesulide improves cognitive outcome more than motor outcome following diffuse traumatic brain injury in rats. Exp Brain Res 147:193–199. doi: 10.1007/s00221-002-1245-z CrossRefPubMedGoogle Scholar
  11. Chan YC, Leung PS (2007) Angiotensin II type 1 receptor-dependent nuclear factor-kappaB activation-mediated proinflammatory actions in a rat model of obstructive acute pancreatitis. J Pharmacol Exp Ther 323:10–18. doi: 10.1124/jpet.107.124891 CrossRefPubMedGoogle Scholar
  12. Chao CC, DeLaHunt M, Hu S, Close K, Peterson PK (1992) Immunologically mediated fatigue: a murine model. Clin Immunol Immunopathol 64:161–165CrossRefPubMedGoogle Scholar
  13. Ciobica A, Bild W, Hritcu L, Haulica I (2009) Brain renin-angiotensin system in cognitive function: pre-clinical findings and implications for prevention and treatment of dementia. Acta Neurol Belg 109:171–180PubMedGoogle Scholar
  14. Conrad CD, Hemmerle AM, Herman JP, Seroogy KB (2010) A critical review of chronic stress effects on spatial learning and memory stress, depression and Parkinson’s disease. Prog Neuro-psychopharmacology Biol Psychiatry 34:742–755CrossRefGoogle Scholar
  15. Dhir A, Naidu PS, Kulkarni SK (2007) Neuroprotective effect of nimesulide, a preferential COX-2 inhibitor, against pentylenetetrazol (PTZ)-induced chemical kindling and associated biochemical parameters in mice. Seizure 16:691–697. doi: 10.1016/j.seizure.2007.05.016 CrossRefPubMedGoogle Scholar
  16. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefPubMedGoogle Scholar
  17. Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefPubMedGoogle Scholar
  18. Flachenecker P, Bihler I, Weber F, Gottschalk M, Toyka KV, Rieckmann P (2004) Cytokine mRNA expression in patients with multiple sclerosis and fatigue. Mult Scler 10:165–169CrossRefPubMedGoogle Scholar
  19. Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J (2013) Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep 65:1655–1662CrossRefPubMedGoogle Scholar
  20. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766PubMedGoogle Scholar
  21. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 126:131–138CrossRefPubMedGoogle Scholar
  22. Groeschel M, Braam B (2011) Connecting chronic and recurrent stress to vascular dysfunction: no relaxed role for the renin-angiotensin system. Am J Physiol Renal Physiol 300:F1–10. doi: 10.1152/ajprenal.00208.2010 CrossRefPubMedGoogle Scholar
  23. Gupta S, Aggarwal S, Starr A (1999) Increased production of interleukin-6 by adherent and non-adherent mononuclear cells during ‘natural fatigue’ but not following ‘experimental fatigue’ in patients with chronic fatigue syndrome. Int J Mol Med 3:209–213PubMedGoogle Scholar
  24. Hemmerle AM, Herman JP, Seroogy KB (2012) Stress, depression and Parkinson’s disease. Exp Neurol 233:79–86. doi: 10.1016/j.expneurol.2011.09.035 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Hou D-r et al (2008) Altered angiotensin-converting enzyme and its effects on the brain in a rat model of Alzheimer disease. Chin Med J (Engl) 121:2320–2323Google Scholar
  26. Hritcu L, Bild W, Ciobica A, Artenie V, Haulica I (2009) P02-169 Behavioral changes induced by angiotensin AT1 receptors blockade in the rat brain European Psychiatry 24. Supplement 1:S859Google Scholar
  27. Huntjens DRH, Spalding DJM, Danhof M, Della Pasqua OE (2009) Differences in the sensitivity of behavioural measures of pain to the selectivity of cyclo-oxygenase inhibitors. Eur J Pain 13:448–457. doi: 10.1016/j.ejpain.2008.06.011 CrossRefPubMedGoogle Scholar
  28. Jain NK, Patil CS, Kulkarni SK, Singh A (2002) Modulatory role of cyclooxygenase inhibitors in aging- and scopolamine or lipopolysaccharide-induced cognitive dysfunction in mice. Behav Brain Res 133:369–376CrossRefPubMedGoogle Scholar
  29. Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL (2009) The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109:656–669. doi: 10.1111/j.1471-4159.2009.05999.x CrossRefPubMedGoogle Scholar
  30. Joyce E, Blumenthal S, Wessely S (1996) Memory, attention, and executive function in chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 60:495–503PubMedCentralCrossRefPubMedGoogle Scholar
  31. Kalonia H, Kumar P, Kumar A, Nehru B (2010) Protective effect of rofecoxib and nimesulide against intra-striatal quinolinic acid-induced behavioral, oxidative stress and mitochondrial dysfunctions in rats. Neurotoxicology 31:195–203. doi: 10.1016/j.neuro.2009.12.008 CrossRefPubMedGoogle Scholar
  32. Kennedy G et al (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. Free Radic Biol Med 39:584–589CrossRefPubMedGoogle Scholar
  33. Kulkarni SK, Reddy DS (1996) Animal behavioral models for testing antianxiety agents. Methods Find Exp Clin Pharmacol 18:219–230PubMedGoogle Scholar
  34. Kumar A, Kumari B, Kumar P (2010) Protective effects of selective and non-selective cyclooxygenase inhibitors in an animal model of chronic stress. Neurosci Bull 26:17–27. doi: 10.1007/s12264-010-0713-x CrossRefPubMedGoogle Scholar
  35. Kumar A, Vashist A, Kumar P, Kalonia H, Mishra J (2012) Potential role of licofelone, minocycline and their combination against chronic fatigue stress induced behavioral, biochemical and mitochondrial alterations in mice. Pharmacol Rep 64:1105–1115CrossRefPubMedGoogle Scholar
  36. Lanz TV et al (2010) Angiotensin II sustains brain inflammation in mice via TGF-beta. J Clin Invest 120:2782–2794. doi: 10.1172/jci41709 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Li JJ, Lu J, Kaur C, Sivakumar V, Wu CY, Ling EA (2009) Expression of angiotensin II and its receptors in the normal and hypoxic amoeboid microglial cells and murine BV-2 cells. Neuroscience 158:1488–1499. doi: 10.1016/j.neuroscience.2008.11.046 CrossRefPubMedGoogle Scholar
  38. Li Z et al (2014) Prophylactic angiotensin type 1 receptor antagonism confers neuroprotection in an aged rat model of postoperative cognitive dysfunction. Biochem Biophys Res Commun 449:74–80. doi: 10.1016/j.bbrc.2014.04.153 CrossRefPubMedGoogle Scholar
  39. Liu H-q et al (2006) Angiotensin II stimulates intercellular adhesion molecule-1 via an AT1 receptor/nuclear factor-kappaB pathway in brain microvascular endothelial cells. Life Sci 78:1293–1298. doi: 10.1016/j.lfs.2005.06.049 CrossRefPubMedGoogle Scholar
  40. Luck H (1954) Quantitative determination of catalase activity of biological material. Enzymologia 17:31–40PubMedGoogle Scholar
  41. Maes M (2009) Inflammatory and oxidative and nitrosative stress pathways underpinning chronic fatigue, somatization and psychosomatic symptoms. Curr Opin Psychiatry 22:75–83CrossRefPubMedGoogle Scholar
  42. Maes M, Mihaylova I, Bosmans E (2007a) Not in the mind of neurasthenic lazybones but in the cell nucleus: patients with chronic fatigue syndrome have increased production of nuclear factor kappa beta. Neuro Endocrinol Lett 28:456–462PubMedGoogle Scholar
  43. Maes M, Mihaylova I, Kubera M, Bosmans E (2007b) Not in the mind but in the cell: increased production of cyclo-oxygenase-2 and inducible NO synthase in chronic fatigue syndrome. Neuro Endocrinol Lett 28:463–469PubMedGoogle Scholar
  44. Mervaala EM et al (1999) Monocyte infiltration and adhesion molecules in a rat model of high human renin hypertension. Hypertension 33:389–395CrossRefPubMedGoogle Scholar
  45. Metodiewa D, Koska C (2000) Reactive oxygen species and reactive nitrogen species: relevance to cyto (neuro) toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233CrossRefPubMedGoogle Scholar
  46. Moss RB, Mercandetti A, Vojdani A (1999) TNF-alpha and chronic fatigue syndrome. J Clin Immunol 19:314–316CrossRefPubMedGoogle Scholar
  47. Nomura S, Shimizu J, Kinjo M, Kametani H, Nakazawa T (1982) A new behavioral test for antidepressant drugs. Eur J Pharmacol 83:171–175CrossRefPubMedGoogle Scholar
  48. O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 13:45–82PubMedGoogle Scholar
  49. Phillips MI, de Oliveira EM (2008) Brain renin angiotensin in disease. J Mol Med (Berl) 86:715–722. doi: 10.1007/s00109-008-0331-5 CrossRefGoogle Scholar
  50. Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109. doi: 10.1038/sj.npp.1301574 CrossRefPubMedGoogle Scholar
  51. Raghavendra V, Chopra K, Kulkarni SK (1998) Modulation of motor functions involving the dopaminergic system by AT1 receptor antagonist, losartan. Neuropeptides 32:275–280CrossRefPubMedGoogle Scholar
  52. Raison CL, Lin J-MS, Reeves WC (2009) Association of peripheral inflammatory markers with chronic fatigue in a population-based sample. Brain Behav Immun 23:327–337. doi: 10.1016/j.bbi.2008.11.005 CrossRefPubMedGoogle Scholar
  53. Reddy DS, Kulkarni SK (1998) Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilpine-induced learning impairment. Brain Res 799:215–229CrossRefPubMedGoogle Scholar
  54. Saavedra JM (1999) Emerging features of brain angiotensin receptors. Regul Pept 85:31–45CrossRefPubMedGoogle Scholar
  55. Saavedra JM (2012) Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond) 123:567–590. doi: 10.1042/cs20120078 CrossRefGoogle Scholar
  56. Saavedra JM, Sanchez-Lemus E, Benicky J (2011) Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications. Psychoneuroendocrinology 36:1–18PubMedCentralCrossRefPubMedGoogle Scholar
  57. Sagar DR et al (2011) The contribution of spinal glial cells to chronic pain behaviour in the monosodium iodoacetate model of osteoarthritic pain. Mol Pain 7:88. doi: 10.1186/1744-8069-7-88 PubMedCentralCrossRefPubMedGoogle Scholar
  58. Shimizu J, Nomura S, Kuno H, Nakazawa T (1984) Effects of water temperature and weight of wheel load on water wheel turning behavior of imipramine administered mice. Psychopharmacology 84:20–21CrossRefPubMedGoogle Scholar
  59. Short K, McCabe M, Tooley G (2002) Cognitive functioning in chronic fatigue syndrome and the role of depression, anxiety, and fatigue. J Psychosom Res 52:475–483CrossRefPubMedGoogle Scholar
  60. Silber RH, Busch RD, Oslapas R (1958) Practical procedure for estimation of corticosterone or hydrocortisone. Clin Chem 4:278–285PubMedGoogle Scholar
  61. Singh DP, Chopra K (2014) Flavocoxid, dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, exhibits neuroprotection in rat model of ischaemic stroke. Pharmacol Biochem Behav 120:33–42. doi: 10.1016/j.pbb.2014.02.006 CrossRefPubMedGoogle Scholar
  62. Spence VA, Kennedy G, Belch JJF, Hill A, Khan F (2008) Low-grade inflammation and arterial wave reflection in patients with chronic fatigue syndrome. Clin Sci (Lond) 114:561–566. doi: 10.1042/cs20070274 CrossRefGoogle Scholar
  63. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J (2003) Inflammation and angiotensin II. Int J Biochem Cell Biol 35:881–900CrossRefPubMedGoogle Scholar
  64. Taché Y, Du Ruisseau P, Taché J, Selye H, Collu R (1976) Shift in adenohypophyseal activity during chronic intermittent immobilization of rats. Neuroendocrinology 22:325–336CrossRefPubMedGoogle Scholar
  65. Tomoda A, Joudoi T, Rabab EM, Matsumoto T, Park TH, Miike T (2005) Cytokine production and modulation: comparison of patients with chronic fatigue syndrome and normal controls. Psychiatry Res 134:101–104. doi: 10.1016/j.psychres.2005.01.002 CrossRefPubMedGoogle Scholar
  66. Tsutamoto T et al (2000) Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol 35:714–721CrossRefPubMedGoogle Scholar
  67. Ulrich-Lai YM, Figueiredo HF, Ostrander MM, Choi DC, Engeland WC, Herman JP (2006) Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab 291:E965–E973. doi: 10.1152/ajpendo.00070.2006 CrossRefPubMedGoogle Scholar
  68. Uresin Y, Erbas B, Ozek M, Ozkok E, Gurol AO (2004) Losartan may prevent the elevation of plasma glucose, corticosterone and catecholamine levels induced by chronic stress. J Renin-Angio-Aldo Syst 5:93–96. doi: 10.3317/jraas.2004.017 CrossRefGoogle Scholar
  69. Wayner MJ, Armstrong DL, Polan-Curtain JL, Denny JB (1993) Role of angiotensin II and AT1 receptors in hippocampal LTP. Pharmacol Biochem Behav 45:455–464CrossRefPubMedGoogle Scholar
  70. Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676PubMedCentralCrossRefPubMedGoogle Scholar
  71. Wolf K, Castrop H, Hartner A, Goppelt-Strube M, Hilgers KF, Kurtz A (1999) Inhibition of the renin-angiotensin system upregulates cyclooxygenase-2 expression in the macula densa. Hypertension 34:503–507CrossRefPubMedGoogle Scholar
  72. Yang G, Xi ZX, Wan Y, Wang H, Bi G (1993) Changes in circulating and tissue angiotensin II during acute and chronic stress. Biol Signals 2:166–172CrossRefPubMedGoogle Scholar
  73. Zhang J, Jiang W, Zuo Z (2014) Pyrrolidine dithiocarbamate attenuates surgery-induced neuroinflammation and cognitive dysfunction possibly via inhibition of nuclear factor kappaB. Neuroscience 261:1–10. doi: 10.1016/j.neuroscience.2013.12.034 PubMedCentralCrossRefPubMedGoogle Scholar
  74. Zhao Q, Ishibashi M, Hiasa K-I, Tan C, Takeshita A, Egashira K (2004) Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension 44:264–270. doi: 10.1161/01.HYP.0000138688.78906.6b CrossRefPubMedGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Anil Kumar
    • 1
    Email author
  • Barinder Singh
    • 1
  • Jitendriya Mishra
    • 1
  • Sangeeta Pilkhwal Sah
    • 1
  • Raghavender Pottabathini
    • 1
  1. 1.Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-Center of Advanced Study (UGC-CAS)Panjab UniversityChandigarhIndia

Personalised recommendations