Inflammopharmacology

, Volume 22, Issue 6, pp 351–365 | Cite as

Jungia sellowii suppresses the carrageenan-induced inflammatory response in the mouse model of pleurisy

  • Marina Nader
  • Geison Vicente
  • Julia Salvan da Rosa
  • Tamires Cardoso Lima
  • Alyne Machado Barbosa
  • Alan Diego Conceição Santos
  • Andersson Barison
  • Eduardo Monguilhott Dalmarco
  • Maique Weber Biavatti
  • Tânia Silvia Fröde
Research Article

Abstract

This study was conducted to explore the anti-inflammatory effect of Jungia sellowii (Asteraceae) using a murine model of pleurisy induced by carrageenan (Cg). This plant is used in southern Brazil to treat inflammatory diseases. J. sellowii leaves were extracted with ethanol/water to obtain the crude extract (CE), which was fractionated with different solvents, yielding n-hexane (Hex), dichloromethane (DCM), ethyl acetate (EtOAc) and n-butanol (BuOH) fractions, and aqueous fraction (Aq). The major compounds succinic acid (SA) and lactic acid (LA) were isolated from Aq fraction, and their structures were determined by 1H and 13C NMR. Pleurisy was induced by Cg (Saleh et al. 1996). The leukocytes, exudation, myeloperoxidase (MPO) and adenosine–deaminase (ADA) activities, metabolites of nitric oxide (NOx) levels, protein levels and mRNA expression for interleukin 1 beta (IL-1β), tumour necrosis factor alpha (TNF-α), interleukin 17A (IL17A) and inducible of nitric oxide synthase (iNOs), and p65 protein phosphorylation (NF-κB) were analysed 4 h after pleurisy induction. Animals pre-treated with CE, BuOH, Aq, SA, or LA inhibited leukocytes, exudation, MPO and ADA activities, NOx, IL-1β, TNF-α, and IL-17A levels, and the mRNA expression for IL-1β, TNF-α, IL-17A, iNOS, and p65 protein phosphorylation (NF-κB) (p < 0.05). Our study demonstrated that J. sellowii can protect against inflammation induced by Cg by decreasing the leukocytes and exudation. Its effects are related to the decrease of either proinflammatory cytokines and/or NOx. The isolated compounds SA and LA may play an important role in this anti-inflammatory action by inhibiting all the studied parameters. The anti-inflammatory properties of these compounds are due to the downregulation of NF-κB.

Keywords

Jungia sellowii Anti-inflammatory properties Pleurisy induced by carrageenan NF-kappa B Lactic acid Succinic acid 

References

  1. Buzas M, Chira N, Deleanu C, Rosca S (2003) Identification and quantitative measurement by 1H-NMR spectroscopy of several compounds present in Romanian wines. Rev Chim 54:831–833Google Scholar
  2. Casado R, Landal A, Calvol JJ, Del Terencio MDC, Calvo MI (2010) Anti-inflammatory and antioxidant activities of Jungia paniculata. Pharm Biol 48:897–905PubMedCrossRefGoogle Scholar
  3. Chu W (2013) Tumor necrosis factor. Cancer Lett 328:222–225PubMedCentralPubMedCrossRefGoogle Scholar
  4. Conforti F, Menichini F (2011) Phenolic compounds from plants as nitric oxide production inhibitors. Curr Med Chem 18:1137–1145PubMedCrossRefGoogle Scholar
  5. Cuzzocrea S, Mazzon E, Calabro G, Dugo L, De Sarro A, Van De Loo FAJ, Caputi AP (2000) Inducible nitric oxide synthase—knockout mice exhibit resistance to pleurisy and lung injury caused by carrageenan. Am J Respir Crit Care Med 162:1859–1866PubMedCrossRefGoogle Scholar
  6. De-La-Cruz H, Vilcapoma G, Zevallos PA (2007) Ethnobotanical study of medicinal plants used by the Andean people of Canta, Lima, Peru. J Ethnopharmacol 111:284–294PubMedCrossRefGoogle Scholar
  7. Diamant G, Dikkstein R (2013) Transcriptional control by NF-kappa B: elongation in focus. Biochem Biophys Acta 1829:937–945PubMedGoogle Scholar
  8. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550PubMedCrossRefGoogle Scholar
  9. dos Santos G, Kutuzov MA, Ridge KM (2012) The inflammasome in lung diseases. Am J Physiol Lung Cell Mol Physiol 303(8):L627–L633PubMedCrossRefGoogle Scholar
  10. Fröde TS, Medeiros YS (2001) Myeloperoxidase and adenosine-deaminase levels in the pleural fluid leakage induced by carrageenan in the mouse model of pleurisy. Mediat Inflamm 10:223–227CrossRefGoogle Scholar
  11. Giusti G, Galanti B (1984) Adenosine deaminase: colorimetric method. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlang Chemie Press, Weinheim, pp 315–323Google Scholar
  12. Goleniowski ME, Bongiovanni GA, Palacio L, Nuñez CO, Cantero JJ (2006) Medicinal plants from the “Sierra de Comechigones”, Argentina. J Ethnopharmacol 107:324–341PubMedCrossRefGoogle Scholar
  13. Green IC, Wagner DA, Glowski J, Skipper PL, Wishnok JS, Tannenbaum SB (1982) Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126:131–138PubMedCrossRefGoogle Scholar
  14. Guo J, Gu N, Chen J, Shi T, Zhou Y, Rong Y, Zhou T, Yang W, Gui X, Chen W (2013) Neutralization of interleukin-1 beta attenuates silica-induced lung inflammation and fibrosis in C57BL/6 mice. Arch Toxicol 87:1963–1973PubMedCrossRefGoogle Scholar
  15. Hammond GB, Fernándes ID, Villegas LF, Vaisberg AJ (1998) A survey of traditional medicinal plants from the Callejón de Huaylas, Department of Ancash, Perú. J Ethnopharmacol 61:17–30PubMedCrossRefGoogle Scholar
  16. Hoesel B, Schmid J (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12(86):1–15Google Scholar
  17. Jiang J, Xu G, Shi Y, Qiao Y, Hu G, Ren X (2013) Lactic acid inhibits lipopolysaccharide-induced translocation of NF-κB p65 from cytoplasm to nucleus and transcription of nuclear factor-κB p65 and cyclooxygenase 2. AAS 44:204–209Google Scholar
  18. Katinas L, Pruski J, Sancho G, Tellería MC (2008) The subfamily Mutisioideae (Asteraceae). Bot Rev 74:469–716CrossRefGoogle Scholar
  19. Kepp O, Galluzzi L, Kroemer G (2011) Mitochondrial control of the NLRP3 inflammasome. Nat Immunol 12:199–200PubMedCrossRefGoogle Scholar
  20. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175PubMedCrossRefGoogle Scholar
  21. Liu J, Xue J, Zhu Z, Hu G, Ren X (2011a) Lactic acid inhibits NF-κB activation by lipopolysaccharide in rat intestinal mucosa microvascular endothelial cells. ASC 10:954–959Google Scholar
  22. Liu Y, Mei J, Gonzales L, Yang G, Dai N, Wang P, Zhang P, Favara M, Malcom KC, Guttentag S, Worthen GS (2011b) IL-17A and TNF-α exert synergistic effects on expression of CXCL5 by alveolar type II cells in vivo and in vitro. J Immunol 186:3197–3205PubMedCrossRefGoogle Scholar
  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–267PubMedGoogle Scholar
  24. Marchant R, Almeida L, Behling H, Berrrio JC, Bush M, Cleef A, Duivenvoorden J, Kappelle M, De Oliveira P, De Oliveira-Filho AT, Lozano-Garcia S, Hooghiemstra H, Ledru M, Ludlow-Wiechers B, Markgraf V, Mancini V, Paez M, Prieto A, Rangel O, Salgado-Labouriau ML (2002) Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Rev Palaeobot Palynol 21:1–75CrossRefGoogle Scholar
  25. Mazzon E, Cuzzocrea S (2007) Role of TNF-α in lung tight junction alteration in mouse model of acute lung inflammation. Respir Res 8:1–19CrossRefGoogle Scholar
  26. National Research Council (1989) Roots and tubers in lost crops of the Incas: Little known plants of the Andes with promise for worldwide cultivation. National Academy Press, Washington, pp 67–73Google Scholar
  27. Nord LI, Vaag P, Duus J (2004) Quantification of organic and amino acids in beer by 1H NMR spectroscopy. Anal Chem 76:4790–4798PubMedCrossRefGoogle Scholar
  28. Rao TS, Currie JL, Shaffer AF, Isakson PC (1993) Comparative evaluation of arachidonic acid (AA)-and tetradecanoylphorbol acetate (TPA)-induced dermal inflammation. Inflammation 17:723–741PubMedCrossRefGoogle Scholar
  29. Redington AE (2006) Modulation of nitric oxide pathways: therapeutic potential in asthma and chronic obstructive pulmonary disease. Eur J Pharmacol 533:263–276PubMedCrossRefGoogle Scholar
  30. Rehecho S, Uriarte-Pueyo I, Calvo J, Vivas LA, Calvo MI (2011) Ethnopharmacological survey of medicinal plants in Nor-Yauyos, a part of the Landscape Reserve Nor-Yauyos-Cochas, Peru. J Ethnopharmacol 133:75–85PubMedCrossRefGoogle Scholar
  31. Rotstein OD, Pruett TL, Firgel VD, Nelson RD, Simmons RL (1985) Succinic acid, a metabolic by-product of Bacteroides species, inhibits polymorfonuclear leukocyte function. Infect Immun 48:402–408PubMedCentralPubMedGoogle Scholar
  32. Rubartelli A, Gattorno M, Netea MG, Dinarello CA (2011) Interplay between redox status and inflammasome activation. Trends Immunol 32:559–566PubMedCrossRefGoogle Scholar
  33. Saleh TS, Calixto JB, Medeiros YS (1996) Anti-inflammatory effects of theophylline, cromolyn and salbutamol in a murine model of pleurisy. Br J Pharmacol 118:811–819PubMedCentralPubMedCrossRefGoogle Scholar
  34. Song X, Qian Y (2013) IL-17 family cytokines mediated signaling in the phatogenesis of inflammatory diseases. Cell Signal 25:2335–2347PubMedCrossRefGoogle Scholar
  35. Tripathi P, Tripathi LK, Singh V (2007) The role of nitric oxide in inflammatory reactions. FEMS Immunol Med Microbiol 51:443–452PubMedCrossRefGoogle Scholar
  36. Williams LN, Petterson KA, Roberts JD (2002) The Conformations of 1,4-butanedioic acid as a function of solvent polarity in a series of alcohols as determined by NMR spectroscopy. J Phys Chem A 106:7491–7493CrossRefGoogle Scholar
  37. Xu G, Jiang J, Wang M, Li J, Su J, Ren X (2013) Lactic acid reduced LPS-induced TNF-α and IL-6 mRNA levels through decreasing IκBα phosphorylation. JIA 12:1073–1078Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Marina Nader
    • 1
  • Geison Vicente
    • 1
  • Julia Salvan da Rosa
    • 1
  • Tamires Cardoso Lima
    • 2
  • Alyne Machado Barbosa
    • 2
  • Alan Diego Conceição Santos
    • 3
  • Andersson Barison
    • 3
  • Eduardo Monguilhott Dalmarco
    • 1
  • Maique Weber Biavatti
    • 2
  • Tânia Silvia Fröde
    • 1
  1. 1.Department of Clinical Analysis, Center of Health SciencesFederal University of Santa Catarina (UFSC)FlorianópolisBrazil
  2. 2.Department of Pharmaceutical Sciences, Center of Health SciencesFederal University of Santa Catarina (UFSC)FlorianópolisBrazil
  3. 3.Department of Chemistry, Centre of Mathematical SciencesFederal University of Paraná (UFPR)CuritibaBrazil

Personalised recommendations